시장보고서
상품코드
1863596

세계의 MicroLED 디스플레이 시장(2026-2036년)

The Global MicroLED Displays Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 574 Pages, 104 Tables, 120 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 MicroLED 디스플레이 시장은 2025년 중요한 분기점에 서 있습니다. 약 20년에 걸친 기술 정교화 과정을 거쳐 장기적인 연구개발 단계에서 초기 상용화 단계로 진입하고 있습니다. 2024년 애플이 마이크로LED 스마트워치 프로젝트를 공개적으로 취소한 이후(이로 인해 ams-Osram의 말레이시아 전용 Kulim 2 공장이 해체됨), 업계의 추진력은 보다 현실적인 기대와 기회 및 제약에 대한 명확한 이해를 바탕으로 신중하게 재구축되고 있습니다.

MicroLED 에코시스템은 에피택셜 웨이퍼 성장에서 최종 시스템 통합에 이르는 전체 가치 체인을 다루는 약 120개 이상의 기업으로 구성되어 있습니다. 지역별 집중도는 수직 통합 생태계가 가장 발달한 대만(생산 능력의 35%), 정부 지원 하에 공격적인 확장을 추진하는 중국(40%), 프리미엄 애플리케이션에 주력하는 한국(15%), 그리고 혁신적인 아키텍처와 AR/VR 애플리케이션 개발을 주도하는 미국/유럽(10%)으로 나타난다. 시장은 두 가지 뚜렷한 기술 경로를 보여줍니다. TV, 자동차, 사이니지 애플리케이션을 위한 대량 전사 TFT 기반 대형 디스플레이; 그리고 2,000 PPI를 초과하는 극한의 픽셀 밀도가 필요한 증강 현실 헤드셋을 겨냥한 LED-on-Silicon(LEDoS) 마이크로 디스플레이입니다.

장기간의 개념 검증 단계를 거친 후, 2025년은 대만 ENNOSTAR, 중국 양저우 HC SemiTek, 샤먼/후베이 산안광전 등 3대 대량 생산 공장의 가동 확대로 의미 있는 첫 생산이 시작되는 해입니다. 이는 업계 최초의 전용 대량 생산 시설로, 실험실 시연에서 상업적 실현 가능성으로의 전환을 알리는 신호입니다. 특히 대만의 AU Optronics(AUO) 제4.5세대 대량 이송 라인이 상업적 생산에 성공하며, 최초의 진정한 상용 마이크로LED 웨어러블 장비인 Garmin fenix 8 Pro 마이크로LED 스마트워치와 Sony-Honda 전기차 외장 디스플레이를 공급 중입니다. 업계 관측통들은 AUO 생산 라인을 “성패를 가르는 순간”으로 평가합니다. 성공 시 제조 경제성을 입증하고 대규모 생산 능력 확대로 이어질 수 있으나, 실패 시 마이크로LED가 수년간 틈새 시장용으로 전락할 수 있습니다.

대형 디스플레이는 현재 가장 성숙한 상업 부문으로, 삼성과 LG는 89인치부터 300인치 이상에 이르는 프리미엄 마이크로LED TV를 10만-30만 달러 가격대에 판매하고 있습니다. 이 모듈형 디스플레이는 레이저 기반 대량 이송 기술을 활용하며, 밝기(1,000 니트 이상), 명암비(100,000 : 1 이상), 수명 면에서 마이크로LED의 우위를 입증합니다. 그러나 비용 구조는 여전히 대중 시장 진출을 가로막고 있습니다. 다이 비용이 부품 비용의 40-50%를 차지하며, 현재 15x30-20x40 마이크로미터 크기의 칩은 소비자 수용 가능한 가격을 위한 10 마이크로미터 미만의 치수를 달성하지 못합니다.

자동차 응용 분야는 특히 헤드업 디스플레이(HUD)에서 단기적으로 강력한 잠재력을 보입니다. 특히 헤드업 디스플레이(HUD)에서는 휘도 요구사항(광학 손실 후 15,000 니트 초과)과 안전성이 매우 중요한 신뢰성이 비싼 가격 설정을 정당화합니다. 2025년 분석에 따르면 개발 중인 HUD는 세 가지 범주로 구분됩니다. 파노라마 HUD(15-20도 시야각), 실제 도로 위에 내비게이션 오버레이를 구현하는 AR-HUD, 그리고 시스템 비용 400-600달러로 중형 차량을 겨냥한 소형 인플레인 HUD입니다. 자동차 인증 주기는 3-5년으로, 2027-2030년이 현실적인 도입 시기로 예상됩니다.

본 보고서에서는 세계의 MicroLED 디스플레이 시장에 대한 조사 분석을 통해 다양한 용도에서 MicroLED 에코시스템이 직면한 중요한 기술적 과제, 제조 규모 확대, 시장 채택에 대한 신뢰성 높은 분석을 제공합니다.

목차

제1장 주요 요약

  • MiniLED 시장
  • MicroLED 시장
  • 세계의 디스플레이 시장
  • MicroLED의 장점
  • MicroLED 마이크로 디스플레이의 적층 조형
  • MicroLED의 용도
  • 시장과 기술의 과제
  • 최근의 산업의 발전
  • MicroLED의 기술 동향(2024-2025년)
  • 표준화 부족과 기술 융합(2025년)
  • 세계의 MicroLED 출하의 예측(-2036년)
  • 코스트 진화 로드맵
  • 경쟁 구도
  • 기술 동향
  • MicroLED의 효율과 디스플레이의 소비 전력(2025년)
  • 제조 인프라의 상황과 진화
  • 응용 상황과 상업적 실정(2025년)
  • MicroLED 생태계

제2장 기술의 소개

  • MicroLED란 및
  • MiniLED(mLED)와 MicroLED의 비교

제3장 제조

  • MicroLED 제조 시설
  • 제조의 성숙도 스펙트럼
  • 공급망의 상황(2025년)
  • 장비 개발 역학
  • 에피택시와 칩 처리
  • 칩 제조
  • 다이 크기 진화
  • MicroLED 성능
  • 전사, 조립 및 통합 기술
  • 대량 이송(2025년) : 기술 융합과 영속적인 과제
  • 수율 관리, 테스트, 수리
  • 제조 비용의 진화와 경제적 실현 가능성의 길
  • 제조 준비도 평가와 병목 분석(2025년)

제4장 결함 관리

  • 개요
  • 결함의 유형
  • 중복 기술
  • 수리

제5장 색변환

  • 기술 비교
  • 풀 컬러 변환
  • 자외선 LED
  • 컬러 필터
  • 적층 RGB MicroLED
  • 3패널 MicroLED 프로젝터
  • 인광체 색변환
  • 양자점 색변환
  • 양자 우물
  • 화질 향상

제6장 광 관리

  • 개요
  • 광 포착법
  • 마이크로카타디옵트릭 광학 어레이
  • 설계된 방향성 방출 프로파일용 적층 제조(AM)

제7장 백플레인과 드라이빙

  • 개요
  • 기술과 재료

제8장 MicroLED 시장

  • 소비자용 전자 디스플레이
  • 바이오테크놀러지 및 의료
  • 자동차
  • 가상현실(VR), 증강현실(AR), 복합현실(MR)
  • 투명 디스플레이
  • 미러 디스플레이
  • 데이터센터용 광 인터커넥트

제9장 기업 프로파일(기업 89사의 프로파일)

제10장 보고서의 목적과 목표

제11장 참고문헌

HBR

The global microLED display market stands at a pivotal juncture in 2025, transitioning from prolonged research and development into early-stage commercialization after nearly two decades of technological refinement. Following Apple's high-profile cancellation of its microLED smartwatch project in 2024-which led to the dismantling of ams-Osram's dedicated Kulim 2 fab in Malaysia-the industry momentum is cautiously rebuilding with more realistic expectations and a clearer understanding of both opportunities and constraints.

The microLED ecosystem comprises approximately 120+ active companies spanning the complete value chain from epitaxial wafer growth through final system integration. Geographic concentration centers on Taiwan (35% of capacity) with the most vertically integrated ecosystem, China (40%) pursuing aggressive government-backed expansion, South Korea (15%) focusing on premium applications, and US/Europe (10%) driving innovation in novel architectures and AR/VR applications. The market exhibits two distinct technology trajectories: mass-transferred TFT-based large displays for television, automotive, and signage applications; and LED-on-Silicon (LEDoS) microdisplays targeting augmented reality headsets requiring extreme pixel densities exceeding 2,000 PPI.

After an extended proof-of-concept phase, 2025 marks the first meaningful production with three major high-volume fabs ramping operations: ENNOSTAR in Taiwan, HC SemiTek in Yangzhou, China, and Sanan Optoelectronics in Xiamen/Hubei. These represent the industry's first dedicated high-volume manufacturing facilities, signaling transition from laboratory demonstrations to commercial viability. Critically, AU Optronics' Gen 4.5 mass transfer line in Taiwan has achieved commercial production, delivering the Garmin fenix 8 Pro MicroLED smartwatch-the first true commercial microLED wearable-and Sony-Honda's electric vehicle exterior display. Industry observers describe AUO's production line as a "make-or-break moment": success could validate manufacturing economics and trigger broader capacity investments; failure could relegate microLED to niche applications for years.

Large format displays currently represent the most mature commercial segment, with Samsung and LG selling premium microLED televisions ranging from 89 to 300+ inches at price points between $100,000 and $300,000. These modular displays leverage laser-based mass transfer technology and demonstrate microLED's superiority in brightness (>1,000 nits), contrast (>100,000:1), and lifetime. However, cost structures remain prohibitive for mass-market penetration, with die costs comprising 40-50% of bill-of-materials and current 15x30 to 20x40 micrometer chip sizes preventing the sub-10 micrometer dimensions required for consumer affordability.

Automotive applications show strong near-term potential, particularly for head-up displays where brightness requirements (>15,000 nits after optical losses) and safety-critical reliability justify premium pricing. The 2025 analysis identifies three HUD categories under development: panoramic HUDs (15-20-degree field of view), AR-HUDs enabling navigation overlay on actual roadways, and compact in-plane HUDs targeting mid-range vehicles at $400-600 system cost. Automotive qualification cycles extend 3-5 years, positioning 2027-2030 as the realistic adoption window.

Augmented reality represents microLED's most compelling long-term opportunity but faces fundamental physics challenges. Brightness emerges as the primary constraint: AR glasses require 50,000-100,000 nits at the microdisplay to deliver adequate visibility after 85% optical losses through projection systems and waveguides. While microLED alone achieves necessary brightness levels, efficiency at submicron emitter sizes remains insufficient, particularly for red wavelengths achieving only 1-3% external quantum efficiency versus the 5-8% required. Recent industry activity demonstrates commitment despite challenges: Mojo Vision raised $75 million (Series B-prime, led by Vanedge Capital) for its innovative 300mm GaN-on-silicon platform combining quantum dot color conversion, while GoerTek invested $100 million to acquire UK-based Plessey Semiconductors through subsidiary Haylo, securing access to Plessey's ultra-high-resolution AR microdisplay technology and recent Meta collaboration producing 6,000,000-nit red microLED displays.

Critical challenges constraining market expansion include: red LED efficiency degradation at small sizes (especially below 3 micrometer); mass transfer yields requiring >99.99% for consumer economics versus current 99.5-99.8%; absence of industry standardization multiplying non-recurring engineering costs; and CMOS backplane development costs ($5-20 million NRE) creating barriers for startups. The industry faces a fundamental conundrum: volume production capability is required to validate commercial legitimacy and drive cost reduction, yet premature investment risks equipment obsolescence as technologies continue evolving.

Supply chains are crystallizing with most leading display makers now controlling or aligned with microLED chip manufacturers. Startup funding increased 10-15% in 2025 versus 2024, though remaining below the 2023 peak, while fab investments proceed cautiously. Industry consensus suggests if current production lines demonstrate technical and economic success, additional capacity will emerge post-2027; conversely, if yields, costs, and manufacturability cannot improve substantially, AR/VR may remain the sole high-volume application alongside specialty B2B displays. The global market trajectory depends critically on the next 18-24 months as first-generation commercial products either validate or challenge the decade-long development investment.

"The Global MicroLED Market 2026-2036" delivers authoritative analysis of the microLED ecosystem as it navigates critical technical challenges, manufacturing scale-up, and market adoption across diverse applications from premium televisions and automotive displays to augmented reality headsets and emerging data center optical interconnects.

The analysis encompasses the complete value chain from epitaxial wafer growth and chip fabrication through mass transfer equipment, backplane integration, display assembly, and system-level products. Application-specific analysis provides technical requirements, cost structures, adoption timelines, and market forecasts for consumer electronics (TVs, smartphones, wearables, laptops), automotive (HUD systems including panoramic, AR-HUD, and in-plane variants), AR/VR/MR (addressing the fundamental brightness constraint for near-eye displays), biomedical devices, transparent displays, and the potentially transformative optical interconnects for AI data centers. Each segment includes SWOT analysis, competitive dynamics, product developer profiles, and realistic commercialization pathways accounting for technical maturity and economic viability.

Manufacturing analysis details epitaxy and chip processing, competing mass transfer technologies (laser-based dominating large displays, stamp-based leading high-PPI panels, fluidic self-assembly facing uncertain prospects), backplane options (TFT for large format, CMOS for microdisplays), yield management and repair strategies, and color conversion approaches (RGB side-by-side versus quantum dot conversion). The report documents why multi-step transfer with chip-on-carrier has become the industry standard, analyzes equipment vendor dynamics as many pause microLED development awaiting customer commitments, and projects cost evolution roadmaps showing pathways to consumer price points.

Market forecasts project unit volumes and revenues by application through 2036, accounting for the bifurcation between mass-market consumer applications (conditional on solving cost and efficiency challenges) and high-value specialty segments (automotive HUDs, AR microdisplays, medical, B2B) where premium pricing justifies current economics.

Technical deep-dives examine die architecture evolution toward target sizes (submicron for AR, 10micrometer mid-term for large displays, 5micrometer long-term aspiration), external quantum efficiency status for blue/green/red emitters, system-level optimization recognizing backplane-LED co-dependencies, driving schemes (PWM versus PAM, TFT versus CMOS), light management, defect management strategies, and the critical search for viable red LED technology at small scales. The report synthesizes equipment landscape assessments, geographic manufacturing capacity analysis, and technology maturity matrices providing actionable intelligence for technology developers, equipment suppliers, display manufacturers, consumer electronics brands, automotive OEMs, investors, and strategic planning teams navigating this complex, high-stakes market.

Report Contents include:

  • MiniLED and MicroLED market status and differentiation
  • Global display market context (OLED, quantum dots, technology assessment)
  • MicroLED benefits and value propositions
  • Application landscape overview
  • Market and technology challenges (die cost, system efficiency, mass transfer, yield management, standardization, application-specific barriers)
  • Recent industry developments (2024-2025 transition, Apple cancellation impact, first commercial products, fab ramp-ups, investment patterns)
  • Standardization deficit analysis and technology convergence status
  • Global shipment forecasts to 2036 (units and revenues by market segment)
  • Cost evolution roadmap and competitiveness timelines
  • Competitive landscape assessment
  • Technology trends and progress status
  • Technology Introduction
    • MicroLED definition, architecture, and operating principles
    • MiniLED versus MicroLED comparison
    • Display configurations and system architectures
    • Development history and commercialization timeline
    • Production technologies and integration approaches
    • Mass transfer technologies overview
    • Comparison to LCD, OLED, and quantum dot displays
    • MicroLED specifications, advantages, and limitations
    • Transparency, borderless, and flexibility capabilities
    • Tiled display architectures
    • Cost structures and die size relationships
  • Manufacturing
    • Manufacturing maturity spectrum and readiness assessment
    • 2025 supply chain status (vertical integration, technology platforms, fab ramp-ups)
    • Equipment development dynamics and vendor ecosystem
    • Epitaxy and chip processing (materials, substrates, MOCVD, uniformity, RGB designs)
    • Die size evolution and 2025 reality
    • MicroLED performance characteristics (EQE, stability, size dependency, surface recombination)
    • Transfer, assembly, and integration technologies (monolithic, heterogeneous wafers, GaN-on-silicon)
    • Mass transfer methods detailed analysis (elastomer stamp, laser-enabled, electrostatic, fluidic self-assembly, pick-and-place)
    • Mass transfer in 2025: technology convergence and persistent challenges
    • Chip-on-carrier (CoC) as industry standard
    • Transfer technology segmentation by application
    • Equipment investment challenges and risks
    • Yield management, testing, and repair strategies and equipment
    • Manufacturing cost evolution and economic viability pathways
    • Cost structure analysis for representative applications
    • Die cost, transfer, testing, and total module cost reduction roadmaps
    • Manufacturing readiness assessment and bottleneck analysis
    • Process maturity matrix
    • Geographic manufacturing landscape
  • Defect Management
    • Overview and critical importance
    • Defect types and sources
    • Redundancy techniques and architectures
    • Repair technologies (laser micro-trimming, replacement strategies)
  • Color Conversion Technologies
    • Technology comparison and selection criteria
    • Full color conversion approaches
    • UV LED pumping
    • Color filters
    • Stacked RGB microLEDs
    • Three-panel projectors
    • Phosphor color conversion (materials, thermal stability, challenges)
    • Quantum dot color conversion (operation modes, cadmium vs. cadmium-free, perovskite QDs, graphene QDs)
    • QD display types and pixel patterning techniques
    • Quantum wells
    • Image quality optimization
  • Light Management
    • Overview and importance for efficiency
    • Light capture methods and optical design
    • Micro-catadioptric optical arrays
    • Additive manufacturing for engineered emission profiles
  • Backplanes and Driving
    • Overview of backplane technologies
    • TFT materials and OLED pixel driving heritage
    • Passive versus active matrix addressing
    • Pulse width modulation (PWM) and driving schemes
    • Voltage considerations for microLEDs
    • RGB driving schemes
    • LTPS backplane integration
  • Markets for MicroLEDs
    • Consumer Electronic Displays:
      • Market map and ecosystem players
      • Market adoption roadmap and timeline
      • Large flat panel displays and TVs (Samsung, LG products; 2025 manufacturing advances)
      • Smartwatches and wearables (first commercial products, industry inflection point)
      • Smartphones (OLED cost gap analysis)
      • Laptops, monitors, and tablets (IT/productivity applications)
      • Foldable and stretchable displays (global market, applications, product developers)
      • SWOT analysis
    • Biotech and Medical:
      • Global medical display market
      • Applications (implantable devices, lab-on-chip, endoscopy, surgical displays, phototherapy, biosensing, brain-machine interfaces)
      • Product developers
      • SWOT analysis
    • Automotive:
      • Global automotive display market
      • Applications (cabin displays, head-up displays with detailed HUD categories analysis, exterior signaling and lighting)
      • Current HUD limitations and alternative technology comparison
      • HUD application categories (panoramic, AR-HUD, in-plane)
      • Product developers
      • SWOT analysis
    • Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR):
      • Global VR/AR/MR market
      • Brightness as main constraint for near-eye displays (critical 2025 analysis)
      • Applications (AR/VR smart glasses and HMDs, microLED contact lenses)
      • Products developers
      • SWOT analysis
    • Transparent Displays:
      • Global transparent display market
      • Applications (smart windows, display glass overlays)
      • Market forecasts and technology adoption (2025)
      • Product developers
      • SWOT analysis
    • Mirror Displays:
      • Technology concept and construction
      • Applications (automotive mirrors, smart home, retail, security)
    • Optical Interconnects for Data Centers:
      • Market context and opportunity for AI/HPC
      • Technical requirements for optical interconnects
      • MicroLED integration with silicon photonics
      • Market potential and forecast
      • Key technical challenges
      • Competitive landscape
  • Company Profiles: Detailed profiles including company background, technology approach, product portfolio, partnerships, manufacturing capabilities, and strategic positioning. Companies profiled include Aledia, ALLOS Semiconductors GmbH, Apple, AUO, Avicena, BOE Technology Group Co. Ltd., C Seed, CEA-Leti, Cellid Inc., ChipFoundation, eLux Inc., Enkris, Ennostar, EpiPix Ltd., Epileds Technologies, Focally, Foxconn Electronics, Fronics, HannStar Display Corp., HC SemiTek Corporation, Ingantec, Innolux Corporation, Innovation Semiconductor, Innovision, Jade Bird Display (JBD), Japan Display Inc. (JDI), Konka Group, Kopin Corporation, Kubos Semiconductors, LG Display Co. Ltd. and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The MiniLED market
  • 1.2. The MicroLED market
  • 1.3. The global display market
    • 1.3.1. OLEDs
    • 1.3.2. Quantum dots
    • 1.3.3. Display technologies assessment
  • 1.4. Benefits of MicroLEDs
  • 1.5. Additive manufacturing for microLED micro-displays
  • 1.6. MicroLEDs applications
  • 1.7. Market and technology challenges
    • 1.7.1. MicroLED Die Cost, Performance and Manufacturing Infrastructure
    • 1.7.2. System-Level Efficiency and Backplane-LED Co-Optimization
    • 1.7.3. Mass Transfer Equipment and Technologies
    • 1.7.4. Yield Management Strategies and Equipment
    • 1.7.5. Standardization Deficit
    • 1.7.6. Application-Specific Challenges
  • 1.8. Recent Industry developments
    • 1.8.1. MicroLED Industry Developments 2025
    • 1.8.2. CES 2025 MicroLED products and prototypes
    • 1.8.3. The Watershed Year: 2024-2025 Transition
    • 1.8.4. Apple's Project Cancellation and Immediate Aftermath (2024)
    • 1.8.5. 2025: The Beginning of Commercial Reality
      • 1.8.5.1. First Commercial Products Enter Production
      • 1.8.5.2. AUO's G4.5 Production Line
      • 1.8.5.3. High-Volume MicroLED-Dedicated Chip Fabs Begin Ramping (2025)
    • 1.8.6. Future Fab Investment Outlook
      • 1.8.6.1. Investment Dynamics and the Industry Conundrum
    • 1.8.7. Current Investment Patterns (2025)
      • 1.8.7.1. Risk-Based Investment Hierarchy
      • 1.8.7.2. Equipment Manufacturer Behaviour
    • 1.8.8. Industry Maturity and Realistic Expectations
  • 1.9. MicroLED Technology Trends 2024-2025
    • 1.9.1. Red LED Breakthrough Wave
    • 1.9.2. Mass Production Inflection Point
    • 1.9.3. Quantum Dot Colour Conversion Dominance
    • 1.9.4. Stacked RGB Architecture Emergence
    • 1.9.5. Mass Transfer Technology Maturation
    • 1.9.6. AR/VR Microdisplay Dominance
    • 1.9.7. Automotive Display Expansion
    • 1.9.8. Strategic Consolidation & Partnerships
    • 1.9.9. Apple Watch Cancellation Impact
    • 1.9.10. Flexible & Transparent Display Innovations
    • 1.9.11. MicroIC & Novel Backplane Architectures
    • 1.9.12. Inspection & Yield Management Focus
    • 1.9.13. Wavelength-Specific Innovations
    • 1.9.14. Large-Format Display Scale-Up
    • 1.9.15. Alternative Materials & Novel Structures
      • 1.9.15.1. Perovskite Quantum Dot LEDs (PQDs)
      • 1.9.15.2. Colloidal Quantum Dots (CQDs)
      • 1.9.15.3. Nanowire and Nanorod LEDs
      • 1.9.15.4. Organic LEDs (OLEDs) - Microsized
      • 1.9.15.5. Electroluminescent Quantum Dots (EL-QDs)
      • 1.9.15.6. Monolithic Integration Architectures
      • 1.9.15.7. Carbon Nanotube and 2D Material Approaches
  • 1.10. Standardization Deficit and Technology Convergence (2025)
    • 1.10.1. The Persistent Standardization Problem
    • 1.10.2. Areas Lacking Standardization
      • 1.10.2.1. Process Flow Architecture
      • 1.10.2.2. When and Where to Perform Metrology, Testing, and Repair
      • 1.10.2.3. Equipment Interfaces and Automation
      • 1.10.2.4. LED Specifications and Binning
      • 1.10.2.5. Colour Conversion and Full-Colour Architectures
    • 1.10.3. The Costs of Non-Standardization
      • 1.10.3.1. Multiplying Engineering Samples and NRE Costs
    • 1.10.4. Stranded Asset Risk for Early Movers
    • 1.10.5. Some Convergence Is Occurring
      • 1.10.5.1. Multi-Step Transfer with Intermediate Carriers Now Dominant
    • 1.10.6. Transfer Technology Segmentation by Application
    • 1.10.7. LED Chip Manufacturing Approaching Maturity
    • 1.10.8. Why Standardization Remains Elusive
      • 1.10.8.1. The Path Forward: Collaborative Standardization Efforts Needed
  • 1.11. Global shipment forecasts for MicroLEDs to 2036
    • 1.11.1. Units by Market
    • 1.11.2. Revenue by Market (Million USD)
  • 1.12. Cost evolution roadmap
  • 1.13. Competitive Landscape
  • 1.14. Technology Trends
    • 1.14.1. Progress on All Fronts, But More Is Needed
    • 1.14.2. MicroLED Die Architecture and Size (2025 Status)
      • 1.14.2.1. The Die Size Dilemma: Economic Reality vs. Technical Requirements
      • 1.14.2.2. Die Cost as BOM Driver
      • 1.14.2.3. Current Size Reality (2025)
      • 1.14.2.4. Target Roadmap: The Size Reduction Challenge
        • 1.14.2.4.1. Consumer Applications Requirement: less than 10 micrometer
        • 1.14.2.4.2. Mid-Term Goal for Large Displays: 10 micrometer
        • 1.14.2.4.3. Long-Term Aspirational Goal: ~5 micrometer
      • 1.14.2.5. AR/LEDoS Target: Submicron Emitter Sizes
      • 1.14.2.6. Why the Gap Persists: Technical Barriers to Size Reduction
  • 1.15. MicroLED Efficiency and Display Power Consumption (2025 Status)
    • 1.15.1. System-Level Efficiency: Beyond Individual LED Performance
    • 1.15.2. 2025 Industry Realization: Backplane and LED Co-Optimization Is Essential
      • 1.15.2.1. Backplane Limitations Constraining LED Performance
    • 1.15.3. LED Design Choices Affecting Backplane Requirements
    • 1.15.4. High-Voltage LEDs and MicroLEDs: An Emerging Approach
      • 1.15.4.1. Concept and Benefits
    • 1.15.5. MicroLED EQE: 2025 Overview
      • 1.15.5.1. Blue and Green LED Status
      • 1.15.5.2. Red LED Challenge: The Persistent Problem
      • 1.15.5.3. The Search for the Best Red Technology
      • 1.15.5.4. Improving Internal Quantum Efficiency (IQE)
        • 1.15.5.4.1. IQE Improvement Strategies in 2025
  • 1.16. Manufacturing Infrastructure Status and Evolution
    • 1.16.1. The Equipment Maturity Spectrum
      • 1.16.1.1. Front-End (Epitaxy and Chip Manufacturing): Relatively Mature
      • 1.16.1.2. Why Front-End is Less Risky
      • 1.16.1.3. Mid-Stream (Mass Transfer and Assembly): High Uncertainty
      • 1.16.1.4. Competing Transfer Approaches (2025 Status)
      • 1.16.1.5. The Equipment Vendor Dilemma
      • 1.16.1.6. Backplane and Module Assembly: Moderate Maturity
  • 1.17. Application Status and Commercial Reality (2025)
    • 1.17.1. Overview: From Prototypes to Products
    • 1.17.2. The Application Hierarchy
    • 1.17.3. Smartwatches: The First Consumer Beachhead
      • 1.17.3.1. Garmin fenix 8 Pro MicroLED
      • 1.17.3.2. Advantages for MicroLED in Smartwatches
      • 1.17.3.3. Challenges Specific to Smartwatches
    • 1.17.4. Automotive: Entering Premium EV Market
      • 1.17.4.1. Why Automotive External Displays Are Interesting Entry Point
      • 1.17.4.2. Automotive HUD Applications
      • 1.17.4.3. Automotive Display Technology Comparison
      • 1.17.4.4. Automotive Forecast
    • 1.17.5. Consumer TV Panels
      • 1.17.5.1. The TV Paradox: Perfect Application, Wrong Economics
      • 1.17.5.2. Critical Cost Components Analysis
      • 1.17.5.3. 2025 Price Benchmark: LCD, OLED, Laser TV, and MicroLED
      • 1.17.5.4. Technology Mapping for Large Displays
      • 1.17.5.5. Strategic Implications
      • 1.17.5.6. TV Price Bands and New Technology Adoption Dynamics
      • 1.17.5.7. Risk Factors
    • 1.17.6. Augmented Reality and Virtual Reality Applications
      • 1.17.6.1. The AR Brightness Challenge
      • 1.17.6.2. LED-on-Silicon (LEDoS): The Optimal Architecture for AR
      • 1.17.6.3. Advantages for AR Applications
      • 1.17.6.4. Disadvantages/Challenges
      • 1.17.6.5. Microdisplay Engines Comparison
      • 1.17.6.6. Full-Colour Microdisplays: The Remaining Challenge
      • 1.17.6.7. Companies Leading LEDoS Development
      • 1.17.6.8. Strategic Ecosystem Developments
  • 1.18. MicroLED Ecosystem

2. TECHNOLOGY INTRODUCTION

  • 2.1. What are MicroLEDs?
  • 2.2. MiniLED (mLED) vs MicroLED (micro-LED)
    • 2.2.1. Display configurations
    • 2.2.2. Development
      • 2.2.2.1. Sony
    • 2.2.3. Types
    • 2.2.4. Production
      • 2.2.4.1. Integration
      • 2.2.4.2. Transfer technologies
    • 2.2.5. Comparison to LCD, OLED AND QD
    • 2.2.6. MicroLED display specifications
    • 2.2.7. Commercially available MicroLED products and specifications
    • 2.2.8. Advantages
      • 2.2.8.1. Transparency
      • 2.2.8.2. Borderless
      • 2.2.8.3. Flexibility
    • 2.2.9. Tiled microLED displays
    • 2.2.10. Costs
      • 2.2.10.1. Relationship between microLED cost and die size

3. MANUFACTURING

  • 3.1. MicroLED Manufacturing Facilities
    • 3.1.1. Geographic Distribution Summary
  • 3.2. Manufacturing Maturity Spectrum
  • 3.3. 2025 Supply Chain Status
    • 3.3.1. Vertical Integration and Strategic Alignment
    • 3.3.2. Diverging Technology Platforms
    • 3.3.3. Shared Fundamental Challenges
    • 3.3.4. First High-Volume Fabs Ramping in 2025
    • 3.3.5. Osram Exits Following Apple Cancellation
  • 3.4. Equipment Development Dynamics
    • 3.4.1. Equipment Vendor Dilemma
    • 3.4.2. Current Equipment Development Status (2025)
    • 3.4.3. Impact on Industry
    • 3.4.4. Future Outlook
  • 3.5. Epitaxy and Chip Processing
    • 3.5.1. Materials
    • 3.5.2. Substrates
      • 3.5.2.1. Green gap
    • 3.5.3. Wafer patterning
    • 3.5.4. Metal organic chemical vapor deposition (MOCVD)
    • 3.5.5. Epitaxial growth requirement
    • 3.5.6. Molecular beam epitaxy (MBE)
    • 3.5.7. Uniformity
    • 3.5.8. Manufacturing Infrastructure Reality
      • 3.5.8.1. Scale-Up to High-Volume Production
      • 3.5.8.2. Uniformity Requirements for Small Die
      • 3.5.8.3. Red LED Material Challenges Persist
      • 3.5.8.4. Wafer Size Economics
      • 3.5.8.5. Substrate Technology Evolution
  • 3.6. Chip manufacturing
    • 3.6.1. RGB microLED designs
    • 3.6.2. Epi-film transfer
  • 3.7. Die Size Evolution
    • 3.7.1. Production Reality vs. Research Demonstrations
    • 3.7.2. Why Smaller Die Are Essential Yet Elusive
    • 3.7.3. Technical Challenges Creating Size Floor
    • 3.7.4. Realistic Die Size Roadmap
  • 3.8. MicroLED Performances
    • 3.8.1. Relationship between external quantum efficiency (EQE) and current density
    • 3.8.2. Stability and thermal management
    • 3.8.3. Size dependency
    • 3.8.4. Surface recombination of carriers
    • 3.8.5. Developing efficient high-performance RGB microLEDs
  • 3.9. Transfer, Assembly and Integration Technologies
    • 3.9.1. Monolithic integration
      • 3.9.1.1. Overview
      • 3.9.1.2. Companies
    • 3.9.2. Heterogeneous Wafers
      • 3.9.2.1. Array integration
      • 3.9.2.2. Wafer bonding
      • 3.9.2.3. Hybridization integration
      • 3.9.2.4. Companies
    • 3.9.3. Monolithic microLED arrays
    • 3.9.4. GaN on Silicon
      • 3.9.4.1. Overview
      • 3.9.4.2. Types
        • 3.9.4.2.1. GaN on sapphire
      • 3.9.4.3. Challenges
      • 3.9.4.4. Companies
    • 3.9.5. Mass transfer
      • 3.9.5.1. Chiplet Mass Transfer
      • 3.9.5.2. Elastomer Stamp Transfer (Fine pick and place)
        • 3.9.5.2.1. Overview
        • 3.9.5.2.2. Controlling kinetic adhesion forces
        • 3.9.5.2.3. Pixel pitch
        • 3.9.5.2.4. Micro-transfer printing
        • 3.9.5.2.5. Capillary-assisted transfer printing
        • 3.9.5.2.6. Electrostatic array
        • 3.9.5.2.7. Companies
      • 3.9.5.3. Roll-to-Roll or Roll-to-Panel Imprinting
      • 3.9.5.4. Laser enabled transfer
        • 3.9.5.4.1. Overview
          • 3.9.5.4.1.1. Selective transfer by selective bonding-debonding
        • 3.9.5.4.2. Companies
      • 3.9.5.5. Electrostatic Transfer
      • 3.9.5.6. Micro-transfer
        • 3.9.5.6.1. Overview
        • 3.9.5.6.2. Micro-Pick-and-Place Transfer
        • 3.9.5.6.3. Photo-Polymer Mass Transfer
        • 3.9.5.6.4. Companies
      • 3.9.5.7. Micro vacuum-based transfer
      • 3.9.5.8. Adhesive Stamp
      • 3.9.5.9. Self-Assembly
        • 3.9.5.9.1. Overview
        • 3.9.5.9.2. Fluidically Self-Assembled (FSA) technology
        • 3.9.5.9.3. Magnetically-assisted assembly
        • 3.9.5.9.4. Photoelectrochemically driven fluidic-assembly
        • 3.9.5.9.5. Electrophoretic fluidic-assembly
        • 3.9.5.9.6. Surface energy fluidic-assembly
        • 3.9.5.9.7. Shape-based self-assembly
        • 3.9.5.9.8. Companies
      • 3.9.5.10. All-In-One Transfer
        • 3.9.5.10.1. Overview
        • 3.9.5.10.2. Heterogeneous Wafers in All-in-One Integration
          • 3.9.5.10.2.1. Optoelectronic Array Integration
          • 3.9.5.10.2.2. Wafer Bonding Process and Hybridization
        • 3.9.5.10.3. Companies
    • 3.9.6. Nanowires
      • 3.9.6.1. Overview
        • 3.9.6.1.1. Nanowire Growth on Silicon
        • 3.9.6.1.2. Native EL RGB nanowires
        • 3.9.6.1.3. 3D Integration
    • 3.9.7. Bonding and interconnection
      • 3.9.7.1. Overview
      • 3.9.7.2. Types of bonding
      • 3.9.7.3. Microtube Interconnections
  • 3.10. Mass Transfer in 2025: Technology Convergence and Persistent Challenges
    • 3.10.1. Multi-Step Transfer with CoC as Industry Standard
      • 3.10.1.1. The CoC Process Architecture
      • 3.10.1.2. Why CoC Dominates Despite Adding Complexity
      • 3.10.1.3. Cost Analysis for 100" 4K TV Display
      • 3.10.1.4. Implementation Challenges
    • 3.10.2. Transfer Technology Segmentation by Application
      • 3.10.2.1. Laser-Based Transfer: Dominant for Large Displays
      • 3.10.2.2. Why Laser Dominates Large Displays
      • 3.10.2.3. Limitations
    • 3.10.3. Stamp-Based Transfer: Leading for High-PPI Small/Medium Displays
      • 3.10.3.1. Why Stamps Lead High-PPI Applications
      • 3.10.3.2. Limitations
      • 3.10.3.3. 2025 Status
    • 3.10.4. Fluidic Self-Assembly (FSA): Status Uncertain
    • 3.10.5. Pick-and-Place: Niche Role Only
    • 3.10.6. Equipment Investment Challenges and Risks
  • 3.11. Yield Management, Testing, and Repair
    • 3.11.1. Overview: Why Yield Management Is Make-or-Break
    • 3.11.2. Testing Strategies and Technologies
    • 3.11.3. Advanced Testing Technologies (2025)
    • 3.11.4. Repair Technologies and Strategies
    • 3.11.5. Repair Equipment and Vendors (2025)
  • 3.12. Manufacturing Cost Evolution and Economic Viability Pathways
    • 3.12.1. Current Cost Structure Reality (2025)
      • 3.12.1.1. Cost Structure Analysis: Representative Applications (2025)
    • 3.12.2. Die Cost Reduction Pathways
      • 3.12.2.1. Lever 1: Wafer Cost Reduction
      • 3.12.2.2. Lever 2: Die Per Wafer (Geometric Efficiency)
      • 3.12.2.3. Lever 3: Yield Improvement
      • 3.12.2.4. Combined Die Cost Reduction Potential
    • 3.12.3. Transfer and Assembly Cost Reduction
      • 3.12.3.1. Cost Reduction Mechanisms
    • 3.12.4. Testing and Repair Cost Evolution
    • 3.12.5. Total Display Module Cost Evolution Roadmap
  • 3.13. Manufacturing Readiness Assessment and Bottleneck Analysis (2025)
    • 3.13.1. Process Maturity Matrix
    • 3.13.2. Equipment Landscape and Vendor Ecosystem (2025)
      • 3.13.2.1. Front-End Equipment (Mature Ecosystem)
      • 3.13.2.2. Mid-Stream Equipment (Evolving, Moderate Maturity)
      • 3.13.2.3. Back-End Equipment (Leveraging FPD Maturity)
      • 3.13.2.4. Critical Equipment Gaps and Needs
    • 3.13.3. Geographic Manufacturing Landscape

4. DEFECT MANAGEMENT

  • 4.1. Overview
  • 4.2. Defect types
  • 4.3. Redundancy techniques
  • 4.4. Repair
    • 4.4.1. Techniques
    • 4.4.2. Laser micro trimming

5. COLOUR CONVERSION

  • 5.1. Comparison of technologies
  • 5.2. Full colour conversion
  • 5.3. UV LED
  • 5.4. Colour filters
  • 5.5. Stacked RGB MicroLEDs
    • 5.5.1. Companies
  • 5.6. Three panel microLED projectors
  • 5.7. Phosphor Colour Conversion
    • 5.7.1. Overview
      • 5.7.1.1. Red-emitting phosphor materials
      • 5.7.1.2. Thermal stability
      • 5.7.1.3. Narrow-band green phosphors
      • 5.7.1.4. High performance organic phosphors
    • 5.7.2. Challenges
    • 5.7.3. Companies
  • 5.8. Quantum dots colour conversion
    • 5.8.1. Mode of operation
    • 5.8.2. Cadmium QDs
    • 5.8.3. Cadmium-free QDs
    • 5.8.4. Perovskite quantum dots
    • 5.8.5. Graphene quantum dots
    • 5.8.6. Phosphors and quantum dots
    • 5.8.7. Quantum dots in microLED displays
      • 5.8.7.1. Technology overview
      • 5.8.7.2. QD-based display types
      • 5.8.7.3. Quantum dot colour conversion (QDCC) technology for microLEDs
      • 5.8.7.4. Efficiency drop and red shift in quantum dot emission for displays
      • 5.8.7.5. High blue absorptive quantum dot materials for display
      • 5.8.7.6. QD display pixel patterning techniques
        • 5.8.7.6.1. Inkjet printing
        • 5.8.7.6.2. Photoresists
        • 5.8.7.6.3. Aerosol Jet Printing
    • 5.8.8. Challenges
    • 5.8.9. Companies
  • 5.9. Quantum wells
  • 5.10. Improving image quality

6. LIGHT MANAGEMENT

  • 6.1. Overview
  • 6.2. Light capture methods
  • 6.3. Micro-catadioptric optical array
  • 6.4. Additive manufacturing (AM) for engineered directional emission profiles

7. BACKPLANES AND DRIVING

  • 7.1. Overview
  • 7.2. Technologies and materials
    • 7.2.1. TFT materials
    • 7.2.2. OLED Pixel Driving
    • 7.2.3. TFT Backplane
    • 7.2.4. Passive and active matrix addressing
      • 7.2.4.1. Passive Matrix Addressing
      • 7.2.4.2. Passive Driving Structure
      • 7.2.4.3. Active Matrix Addressing
      • 7.2.4.4. Pulse width modulation (PWM)
      • 7.2.4.5. Driving voltage considerations for microLEDs
    • 7.2.5. RGB Driving Schemes for MicroLED Displays
    • 7.2.6. Active Matrix MicroLED Displays with LTPS Backplanes

8. MARKETS FOR MICROLEDS

  • 8.1. CONSUMER ELECTRONIC DISPLAYS
    • 8.1.1. Overview
    • 8.1.2. Large flat panel displays and TVs
      • 8.1.2.1. Samsung
      • 8.1.2.2. LG
    • 8.1.3. Technology and Manufacturing Advances (2025 Update)
      • 8.1.3.1. Large Module Manufacturing Breakthrough
    • 8.1.4. Smartwatches and Wearables
      • 8.1.4.1. Industry Inflection Point: First Commercial Products (2025)
    • 8.1.5. Smartphones
      • 8.1.5.1. Economic Reality: The OLED Cost Gap (2025)
    • 8.1.6. Laptops, monitors and tablets
    • 8.1.7. Foldable and stretchable displays
      • 8.1.7.1. The global foldable display market
      • 8.1.7.2. Applications
        • 8.1.7.2.1. Foldable TVs
        • 8.1.7.2.2. Stretchable 12" microLED touch displays
        • 8.1.7.2.3. Product developers
    • 8.1.8. SWOT analysis
  • 8.2. BIOTECH AND MEDICAL
    • 8.2.1. The global medical display market
    • 8.2.2. Applications
      • 8.2.2.1. Implantable Devices
      • 8.2.2.2. Lab-on-a-Chip
      • 8.2.2.3. Endoscopy
      • 8.2.2.4. Surgical Displays
      • 8.2.2.5. Phototherapy
      • 8.2.2.6. Biosensing
      • 8.2.2.7. Brain Machine Interfaces
    • 8.2.3. Product developers
    • 8.2.4. SWOT analysis
  • 8.3. AUTOMOTIVE
    • 8.3.1. Global automotive displays market
    • 8.3.2. Applications
      • 8.3.2.1. Cabin Displays
      • 8.3.2.2. Head-up displays (HUD)
        • 8.3.2.2.1. Current HUD Limitations (Technical Detail)
        • 8.3.2.2.2. Alternative Technologies - Limitations
        • 8.3.2.2.3. HUD Application Categories
      • 8.3.2.3. Exterior Signaling and Lighting
    • 8.3.3. Product developers
    • 8.3.4. SWOT analysis
  • 8.4. VIRTUAL REALITY (VR), AUGMENTED REALITY (AR) AND MIXED REALITY (MR)
    • 8.4.1. Global market for virtual reality (VR), augmented reality (AR), and mixed reality (MR)
    • 8.4.2. Brightness - The Main Constraint of Near-Eye Displays for AR (2025 Critical Analysis)
      • 8.4.2.1. Why Brightness is Critical for AR
      • 8.4.2.2. MicroLED - The Technical Solution
    • 8.4.3. Applications
      • 8.4.3.1. AR/VR Smart glasses and head-mounted displays (HMDs)
      • 8.4.3.2. MicroLED contact lenses
    • 8.4.4. Products developers
    • 8.4.5. SWOT analysis
  • 8.5. TRANSPARENT DISPLAYS
    • 8.5.1. Global transparent displays market
    • 8.5.2. Applications
      • 8.5.2.1. Smart Windows
      • 8.5.2.2. Display Glass Overlays
    • 8.5.3. Market Forecasts and Technology Adoption (2025)
    • 8.5.4. Product developers
    • 8.5.5. SWOT analysis
  • 8.6. MIRROR DISPLAYS
    • 8.6.1. Technology Concept
    • 8.6.2. Applications
  • 8.7. OPTICAL INTERCONNECTS FOR DATA CENTERS
    • 8.7.1. Market Context and Opportunity
    • 8.7.2. Technical Requirements for Optical Interconnects
    • 8.7.3. MicroLED Integration with Silicon Photonics
    • 8.7.4. Market Potential and Forecast
    • 8.7.5. Key Technical Challenges
    • 8.7.6. Competitive Landscape
      • 8.7.6.1. Alternative Technologies

9. COMPANY PROFILES(89 company profiles)

10. REPORT AIMS AND OBJECTIVES

11. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제