시장보고서
상품코드
1874695

세계의 지속가능한 효소 시장(2026-2036년)

The Global Sustainable Enzymes Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 156 Pages, 35 Tables, 9 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

지속가능한 효소 시장은, 산업 생명 공학에서 가장 역동적이고 빠르게 성장하는 부문 중 하나입니다. 이 시장은 환경부하의 저감, 순환형 경제모델의 실현, 제조 부문에서의 유해한 화학 프로세스의 대체를 목적으로 특별히 개발 및 이용되는 산업용 효소를 포함하고 있습니다. 지속가능성에 대한 관심은 산업용 효소 수요를 근본적으로 재구성하고 있습니다. 세제, 식품가공, 섬유에 있어서 기존의 용도는 계속 성장하고 있지만, 신흥의 지속가능성에 초점을 맞춘 용도가 급속한 확대를 촉진하고 있습니다. 효소에 의한 플라스틱 및 섬유의 재활용은 아마도 가장 혁신적인 발전입니다. 효소는 PET 플라스틱과 폴리 에스테르 섬유를 분해하고 무한히 재활용 가능한 버진 품질 단량체로 변환합니다. 이 기술은 연간 1억 5,000만-2억 톤의 플라스틱 폐기물이라는 세계적인 과제를 다루는 동시에 버진 생산에 비해 30-50%의 이산화탄소 배출 감소를 실현합니다.

바이오연료 생산은 여전히 중요한 촉진요인이며 셀룰라아제와 헤미셀룰라아제에 의해 농업 폐기물을 재생 가능 연료로 전환합니다. 펄프 및 종이 업계에서는 염소계 화학제품을 배제하기 위해 효소 표백의 채용이 증가하고 있으며, 텍스타일 제조업체는 패브릭 가공에 있어서의 강산 및 강 알칼리의 대체로서 효소를 활용하고 있습니다. 이러한 대안은 50-70%의 에너지 소비 절감, 40-60%의 절수, 유해화학 폐기물의 완전 배제 등 대폭적인 환경 상의 혜택을 가져옵니다.

AI 및 머신러닝은 효소 개발에 혁명을 가져오고, 개발 기간을 3-5년에서 6-18개월로 단축함과 동시에 비용을 50-70% 삭감하고 있습니다. 생성형 AI 모델은 전통적인 지향성 진화를 통한 시행 착오 기법을 우회하고 계산을 통해 원하는 특성을 가진 효소를 설계합니다. 이러한 가속화로 새로운 지속가능성 용도를 위한 특수 효소의 신속한 개발이 가능해졌습니다. 단백질 공학의 진보로 기존에는 화학 촉매가 필요한 가혹한 산업 환경에서 작동하는 극한 효소가 만들어졌습니다. 강화된 내열성, pH 내성, 용매 내성은 효소의 적용 범위를 확대하는 동시에, 효소의 재사용 및 고정화 기술을 통해 공정의 경제성을 향상시킵니다.

지속가능한 효소 시장은 순환형 경제의 원칙과 본질적으로 연결되어 있습니다. 재활용 용도를 넘어, 효소는 농업 및 산업 폐기물의 가치화를 가능하게 해, 부산물을 고부가가치인 화학제품, 재료 및 연료로 전환합니다. 전체 세포 발효가 아닌 단리 효소를 이용한 무세포 바이오촉매 시스템은 정제의 단순화에 의해 60-80%의 에너지 절감과 깨끗한 제품을 가져옵니다.

이 보고서는 세계의 지속가능한 효소 시장에 대해 조사 분석하고 시장 역학, 기술 혁신 및 경쟁 구도에 대한 지식을 제공합니다.

목차

제1장 주요 요약

  • 산업용 바이오매뉴팩처링
  • 산업용 바이오매뉴팩처링 프로세스
  • 지속가능한 산업용 효소 시장
  • 현대 산업에서 효소의 중요성
  • 시장 성장 촉진요인
  • 시장 성장 억제요인
  • 스케일업 및 제조의 과제
  • 산업 밸류체인
  • 규제 상황
    • 개요
    • 새로운 효소의 용도에 대한 규제 당국의 승인
  • 산업용 효소 기술의 진보 및 새로운 용도
    • 단백질 공학, 지향성 진화
    • 메타유전체 접근
    • 효소 고정화 기술
    • 컴퓨터 효소 설계
    • 제약, 생명 공학 산업
    • 화장품, 퍼스널케어
    • 바이오 레미디에이션
    • 나노기술
    • 3D 바이오프린팅
    • 효소 재활용, 순환형 재료
  • 산업용 효소의 지속가능성 및 환경 상의 우려
    • 지속가능한 생산에 있어서 산업용 효소의 역할
    • 효소 생산의 수명주기 평가
    • 효소 산업에 있어서 순환형 경제에 대한 대처

제2장 서문

  • 산업용 효소의 분류
  • 산업용 효소의 유형
    • 카르보히드라제
    • 프로테아제
    • 리파제
    • 셀룰라아제
    • 아밀라아제
    • 기타
  • 생산 방식
    • 동식물에서 추출
    • 미생물 발효
    • 유전자 변형 생물
    • 무세포 효소 시스템

제3장 산업용 효소 시장

  • 기술 및 재료 분석
    • 세제용 효소
    • 식품 가공용 효소
    • 섬유 가공 효소
    • 종이 및 펄프 가공용 효소
    • 가죽 가공용 효소
    • 바이오연료 생산용 효소
    • 동물사료용 효소
    • 제약 및 진단용 효소
    • 폐기물 관리 및 바이오레메디에이션용 효소
    • 농업 및 작물 개량용 효소
  • 시장 분석
    • 주요 기업 및 경쟁 구도
    • 시장의 성장 촉진요인 및 동향
    • 미래 전망
    • 위험 및 기회
    • 가격 설정

제4장 세계의 수익

  • 용도 시장별
  • 유형별
  • 원료별
  • 형상별

제5장 기업 프로파일(기업 85사의 프로파일)

제6장 조사 방법

제7장 참고문헌

AJY 25.12.12

The sustainable enzymes market represents one of the most dynamic and rapidly growing segments within industrial biotechnology. This market encompasses industrial enzymes specifically developed and applied to reduce environmental impact, enable circular economy models, and replace harmful chemical processes across manufacturing sectors. Sustainability concerns are fundamentally reshaping industrial enzyme demand. Traditional applications in detergents, food processing, and textiles continue to grow, but emerging sustainability-focused applications are driving accelerated expansion. Enzymatic recycling of plastics and textiles represents perhaps the most transformative development, with enzymes capable of depolymerizing PET plastics and polyester textiles into virgin-quality monomers for infinite recycling. This technology addresses the global challenge of 150-200 million tonnes of annual plastic waste while reducing carbon emissions by 30-50% compared to virgin production.

Biofuel production remains a significant driver, with cellulases and hemicellulases enabling conversion of agricultural waste into renewable fuels. The pulp and paper industry increasingly adopts enzymatic bleaching to eliminate chlorine-based chemicals, while textile manufacturers use enzymes to replace harsh acids and alkalis in fabric processing. These substitutions deliver substantial environmental benefits: 50-70% energy reduction, 40-60% water savings, and elimination of toxic chemical waste streams.

Artificial intelligence and machine learning are revolutionizing enzyme development, reducing timelines from 3-5 years to 6-18 months while cutting costs by 50-70%. Generative AI models now design enzymes with desired properties computationally, bypassing traditional directed evolution's trial-and-error approach. This acceleration enables rapid development of specialized enzymes for emerging sustainability applications. Protein engineering advances have produced extremozymes functioning in harsh industrial conditions previously requiring chemical catalysts. Enhanced thermostability, pH tolerance, and solvent resistance expand enzyme applicability while improving process economics through enzyme reuse and immobilization technologies.

The sustainable enzymes market is intrinsically linked to circular economy principles. Beyond recycling applications, enzymes enable valorization of agricultural and industrial waste streams, converting by-products into valuable chemicals, materials, and fuels. Cell-free biocatalysis systems using isolated enzymes rather than whole-cell fermentation offer 60-80% energy reductions and cleaner products with simplified purification.

"The Global Sustainable Enzymes Market 2026-2036" provides critical insights into the global sustainable industrial enzymes market. As artificial intelligence revolutionizes enzyme design and enzymatic recycling emerges as a game-changing solution to plastic waste, understanding market dynamics, technological innovations, and competitive landscapes becomes essential for stakeholders across biotechnology, chemical manufacturing, textiles, food processing, and waste management sectors. The report provides exhaustive analysis of sustainable enzyme applications spanning detergents, food and beverage processing, textile manufacturing, biofuels production, pharmaceutical development, and the rapidly emerging enzymatic recycling sector. Special emphasis is placed on breakthrough technologies including AI-driven enzyme discovery, cell-free biomanufacturing systems, and enzymatic depolymerization of plastics and textiles-innovations that are fundamentally reshaping circular economy approaches and enabling virgin-quality material recovery from post-consumer waste streams.

With growing regulatory pressure for sustainable manufacturing, carbon emission reduction targets, and circular economy mandates, enzymes offer compelling advantages: 50-70% energy savings compared to chemical processes, 40-60% water consumption reduction, elimination of toxic chemical waste, and significantly lower carbon footprints. This report examines how these sustainability drivers are accelerating enzyme adoption across industries while analyzing the complex regulatory landscape, particularly the evolving recognition of enzymatic recycling as an official recycling pathway in key markets including the European Union, Germany, United States, and Asia-Pacific regions.

Market segmentation analysis covers enzyme types (carbohydrases, proteases, lipases, cellulases, amylases), sources (microbial, plant, animal), forms (liquid, powder, granular), and applications across ten major industrial sectors. Detailed revenue forecasts through 2036 quantify growth opportunities while identifying emerging applications in plastic degradation, textile recycling, and bio-based chemical production that represent the highest-growth segments.

The competitive landscape section profiles 84 leading companies and innovative startups driving sustainable enzyme innovation, from established multinational corporations to venture-backed biotechnology pioneers. Analysis encompasses technology platforms, production capabilities, strategic partnerships, funding rounds, and market positioning, providing decision-makers with actionable intelligence on competitive dynamics and potential collaboration opportunities.

Technology deep-dives examine protein engineering, directed evolution, metagenomic enzyme discovery, computational design using generative AI and machine learning, enzyme immobilization techniques for enhanced reusability, and integration of digital technologies with bioprocessing. Special sections address scale-up challenges, infrastructure development requirements, and capital investment considerations for moving technologies from laboratory to commercial production-critical factors determining market entry success and competitive advantage.

Report Contents Include:

  • Executive summary of sustainable enzymes market dynamics and growth projections
  • Comprehensive analysis of industrial biomanufacturing processes and classifications
  • Detailed market drivers, restraints, and regulatory landscape across major regions
  • Breakthrough technological advancements: AI-driven enzyme design, enzymatic recycling, cell-free systems
  • In-depth applications analysis across 10 industrial sectors with enzyme type specifications
  • Competitive landscape and strategic positioning of 84 key players and emerging innovators
  • Global revenue forecasts 2026-2036 segmented by application, type, source, and form
  • Price trend analysis and forecast through 2036
  • Infrastructure investment requirements and scale-up challenges
  • Circular economy integration strategies and sustainability metrics
  • 33 detailed data tables and 9 illustrative figures
  • Companies Profiled include: AgBiome, Agrivida, Amano Enzyme Inc., Aminoverse, Anodyne Chemistries, Ansa Biotechnologies, Apexzymes, Arctos, Arzeda, Atantares, Basecamp Research, BASF, Biocatalysts Ltd., BioBetter, Bio Fab NZ, BioMap, Biomatter, Biosyntia, Cambrium GmbH, Carbios, Cascade Biocatalysts Inc., CinderBio, Clariant AG, Codexis, Constructive Bio, Debut Biotechnology, Diffuse Bio, DSM-Firmenich, Dupont, Eco Fuel Technology Inc., Elemental Enzymes Inc., EnginZyme AB, EnPlusOne Biosciences, Enzyan Biocatalysis GmbH, Enzymaster, Enzymit, Enzyme, Enzymicals AG, Epoch Biodesign, Ester Biotech, Etcembly, Eversyn, eXoZymes Inc., FabricNano, Futurity Bio-Ventures Ltd., Gen3Bio, General Biological, Ginkgo Bioworks, Global Bioenergies SA, Honext Material SL, HydGene Renewables, Immobazyme, Imperagen Limited, Iogen Corporation, Johnson Matthey and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Industrial Biomanufacturing
  • 1.2. Industrial Biomanufacturing Processes
  • 1.3. Sustainable Industrial Enzymes Markets
  • 1.4. Importance of Enzymes in Modern Industry
  • 1.5. Market Drivers
  • 1.6. Market Restraints
  • 1.7. Scale-Up and Manufacturing Challenges
  • 1.8. Industry Value Chain
  • 1.9. Regulatory Landscape
    • 1.9.1. Overview
    • 1.9.2. Regulatory Recognition of Emerging Enzyme Applications
      • 1.9.2.1. Enzymatic Recycling Regulatory Status
      • 1.9.2.2. Policy Evolution and Positive Signals
      • 1.9.2.3. Expected Regulatory Developments
      • 1.9.2.4. Impact on Market Development
      • 1.9.2.5. Broader Policy Implications
  • 1.10. Technological Advancements and Emerging Applications in Industrial Enzymes
    • 1.10.1. Protein Engineering and Directed Evolution
    • 1.10.2. Metagenomic Approaches
    • 1.10.3. Enzyme Immobilization Techniques
      • 1.10.3.1. Immobilization for Enzymatic Recycling Applications
      • 1.10.3.2. Emerging Immobilization Technologies
    • 1.10.4. Computational Enzyme Design
      • 1.10.4.1. Generative AI and Deep Learning Models
      • 1.10.4.2. Integration with Experimental Data
      • 1.10.4.3. Advanced Computational Techniques
      • 1.10.4.4. Applications and Impact
      • 1.10.4.5. Challenges and Future Directions
    • 1.10.5. Pharmaceutical and Biotechnology Industries
    • 1.10.6. Cosmetics and Personal Care
    • 1.10.7. Bioremediation
    • 1.10.8. Nanotechnology
    • 1.10.9. 3D Bioprinting
    • 1.10.10. Enzymatic Recycling and Circular Materials
      • 1.10.10.1. Plastic and Polyester Recycling
      • 1.10.10.2. Textile Recycling Applications
      • 1.10.10.3. Applicable Polymer Types
      • 1.10.10.4. Process Technology
      • 1.10.10.5. Environmental and Economic Benefits
      • 1.10.10.6. Design for Circularity
      • 1.10.10.7. Industry Adoption
      • 1.10.10.8. Challenges and Development Needs
  • 1.11. Sustainability and Environmental Considerations for Industrial Enzymes
    • 1.11.1. Role of Industrial Enzymes in Sustainable Production
    • 1.11.2. Life Cycle Assessment of Enzyme Production
    • 1.11.3. Circular Economy Initiatives in the Enzyme Industry

2. INTRODUCTION

  • 2.1. Classification of industrial enzymes
  • 2.2. Types of Industrial Enzymes
    • 2.2.1. Carbohydrases
    • 2.2.2. Proteases
    • 2.2.3. Lipases
    • 2.2.4. Cellulases
    • 2.2.5. Amylases
    • 2.2.6. Others
  • 2.3. Production Methods
    • 2.3.1. Extraction from Plant and Animal Sources
    • 2.3.2. Microbial Fermentation
    • 2.3.3. Genetically Engineered Organisms
    • 2.3.4. Cell-Free Enzyme Systems
      • 2.3.4.1. Cell-Free Enzyme Production
      • 2.3.4.2. Cell-Free Biocatalysis
      • 2.3.4.3. Commercial Applications
      • 2.3.4.4. Process Integration
      • 2.3.4.5. Comparison with Precision Fermentation

3. INDUSTRIAL ENZYMES MARKET

  • 3.1. Technology/materials analysis
    • 3.1.1. Detergent Enzymes
    • 3.1.2. Food Processing Enzymes
    • 3.1.3. Textile Processing Enzymes
    • 3.1.4. Paper and Pulp Processing Enzymes
    • 3.1.5. Leather Processing Enzymes
    • 3.1.6. Biofuel Production Enzymes
    • 3.1.7. Animal Feed Enzymes
    • 3.1.8. Pharmaceutical and Diagnostic Enzymes
    • 3.1.9. Waste Management and Bioremediation Enzymes
    • 3.1.10. Agriculture and Crop Improvement Enzymes
  • 3.2. Market analysis
    • 3.2.1. Key players and competitive landscape
    • 3.2.2. Market Growth Drivers and Trends
    • 3.2.3. Future outlook
    • 3.2.4. Risks and Opportunities
    • 3.2.5. Pricing
      • 3.2.5.1. Pricing Trends
      • 3.2.5.2. Factors Affecting Pricing
      • 3.2.5.3. Price Forecast

4. GLOBAL REVENUES

  • 4.1. By application market
  • 4.2. By type
  • 4.3. By source
  • 4.4. By form

5. COMPANY PROFILES(85 company profiles)

6. RESEARCH METHODOLOGY

7. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제