시장보고서
상품코드
1904943

드론 시장(2026-2036년)

The Global Drones Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 541 Pages, 173 Tables, 65 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 드론 시장은 틈새 군사 용도와 취미 용도부터 경제의 거의 모든 부문에서의 산업 생산성, 물류 효율, 데이터 기반 의사결정의 중요한 인에이블러로 크게 변화하고 있습니다. 시장의 규모는 2036년까지 900억 달러 이상에 달할 것으로 예상되며, 특히 상업 부문이 현저한 성장을 보이고 있습니다.

드론 에코시스템은 하드웨어, 소프트웨어, 서비스의 세 가지 상호 연관된 부문으로 구성됩니다. 데이터 수집, 분석, 점검 및 배송 업무를 포함한 무인 항공기 서비스는 예측기간 동안 최대 부문으로서의 지위를 유지하는 반면 하드웨어가 가장 빠르게 성장할 것으로 예측됩니다. 이 가속은 기체 구조, 추진 시스템, 센서, 배터리 등의 지속적인 기술의 진보에 더하여, 상용 이용이 파일럿 프로그램에서 일상 업무로 확대됨에 따라 플릿의 확충이 필수적이라는 것을 반영하고 있습니다. AI, 첨단 센서, 자율비행 능력의 융합이 진행되는 가운데 최소한의 인적 개입으로 비가시권 운항(BVLOS)이 가능한 보다 선진적인 드론 플랫폼에 대한 수요가 높아지고 있습니다.

에너지 부문은 송전선 점검, 풍력 터빈 모니터링, 석유 및 가스 파이프라인 모니터링, 태양광 발전소 평가 등 무인항공시스템을 활용한 상업 드론 전개의 지배적인 업계로 대두하고 있습니다. 드론은 기존의 점검 방법인 헬리콥터 운용에 비해 상당한 비용 절감을 실현하는 동시에 근로자의 안전성과 데이터 품질을 향상시키는 압도적인 우위성을 제공합니다. 그러나 규제 프레임워크가 일상적인 BVLOS 운용에 대응하도록 진화하고, Zipline, Wing, Manna 등 기업이 라스트마일 배송과 미들 마일 배송에 실현 가능한 유닛 이코노믹스를 실증함에 따라, 화물 수송, 택배 서비스, 인트라 물류, 창고 관리 용도가 가장 높은 성장 궤도를 나타낼 전망입니다.

측량 및 매핑은 여전히 무인 항공기의 주요 응용 분야이며 건설, 광업, 농업, 인프라 관리 등 광범위한 이용 사례를 지원합니다. 고해상도 광학 센서, LiDAR, 사진 측량 소프트웨어의 조합으로 정확한 지형 데이터, 디지털 고도 모델, 3D 재구성을 신속하게 생성할 수 있습니다. 이에 이어 두 번째 응용 분야는 점검이며, 산업시설, 유틸리티, 교통 인프라에서 드론을 활용한 시각적 자산관리 솔루션의 도입이 확대되고 있습니다. 사진 촬영과 영상 촬영은 미디어, 엔터테인먼트, 부동산, 마케팅 용도에 의한 강한 수요를 유지하고 있습니다.

아시아는 중국 제조업의 우위와 내수 시장 규모, 일본의 선진 규제 환경과 활발한 기업 도입으로 상업용 드론 시장을 견인하고 있습니다. 세계 상업용 드론 생산의 약 70-80%를 중국이 차지하고 있으며, DJI가 압도적인 시장 점유율을 유지하고 있습니다. 중동 및 아프리카는 인프라 투자, 석유 및 가스 부문의 요구, 아랍에미리트(UAE)와 같은 시장에서의 진보적인 규제 프레임워크를 통해 가장 높은 성장률을 달성할 것으로 예측됩니다. 북미와 유럽은 여전히 중요한 시장을 형성하고 있지만, 특히 BVLOS(비가시권 운항) 운영에 관한 규제의 복잡성은 보다 관대한 접근 방식을 취하는 지역에 비해 성장을 억제하고 있습니다.

드론운항관리(UTM), 감지 및 회피(DAA) 시스템, AI의 진보에 의해 실현되는 일상적인 자율운항에 대한 경로는 2036년까지 시장 역학을 근본적으로 재구축하여 현재 규제나 기술적 장벽에 의해 제한되고 있는 용도를 창출할 것으로 보입니다.

세계의 드론 시장은 무인 항공 시스템(UAS)이 신기술에서 세계 산업의 필수 비즈니스 인프라로 전환하는 가운데 혁신의 10년을 맞이하고 있습니다.

본 보고서는 세계의 드론 시장에 대한 조사 분석을 통해 2036년까지의 시장 규모, 성장 궤도, 기술 개발, 규제 프레임워크 및 경쟁 역학에 대한 인사이트를 제공합니다.

목차

제1장 주요 요약

  • 조사 범위 및 목적
  • 주요 용도 및 성장 동향
  • 드론 산업의 자금 조달 및 투자
  • 시장 예측

제2장 소개

  • 드론이란
  • 업계 소개
  • 기술
  • 센서 퓨전
  • 자율성 레벨(원격 조종부터 완전 자율화까지)

제3장 세계의 규제 프레임워크

  • 규제 개요
  • 중국
  • 미국
  • 유럽연합
  • 영국
  • 브라질
  • 기타 주요 시장
  • 농약 살포 규제

제4장 시장과 용도

  • 상업 시장 개요
  • 농업용 드론
  • 산업 및 인프라 검사
  • 물류 및 화물 배송
  • 군 및 방위
  • 재해 대응 및 공공 안전
  • 조사 및 지도 작성
  • 건설
  • 통신

제5장 주요 기술

  • 소프트웨어 및 내비게이션
  • 통신 및 네트워킹
  • 스웜 제어

제6장 드론 센서

  • 첨단 이미지 센서
  • 가스 센서
  • AI

제7장 시장 예측

  • 수량 예측
  • 수익 예측
  • 상업용 드론 시장 : 부문별
  • 상업용 드론 시장 : 산업별
  • 상업용 드론 시장 : 판매대수별
  • 레크리에이션용 드론 시장 : 부문별
  • 레크리에이션용 드론 시장 : 판매대수별
  • 모든 드론 시장 : 지역 및 국가별
  • 시나리오 분석
  • 센서 시장 예측

제8장 성장 장벽 분석

  • 개요
  • 인식 장벽
  • 규제 장벽
  • 기술 장벽
  • 실장 장벽

제9장 공급망 분석

  • 개요
  • 컴포넌트 분석
  • 지역공급망 분석
  • 공급망의 위험 및 탄력성

제10장 미래 전망

  • 기술 궤적
  • 시장 진화
  • 규제 진화
  • 신용도
  • 사회적 및 경제적 영향

제11장 기업 프로파일(155개사의 프로파일)

제12장 부록

제13장 참고문헌

CSM

The global drone market is undergoing a profound transformation, evolving from niche military and hobbyist applications into a critical enabler of industrial productivity, logistics efficiency, and data-driven decision-making across virtually every sector of the economy. The market is forecast to exceed US$90 billion by 2036, with the commercial segment demonstrating particularly robust momentum.

The drone ecosystem comprises three interconnected segments: hardware, software, and services. While drone services-encompassing data capture, analytics, inspection, and delivery operations-will maintain its position as the largest segment throughout the forecast period, hardware is poised to deliver the fastest growth. This acceleration reflects ongoing technological advancement in airframes, propulsion systems, sensors, and batteries, alongside the imperative for fleet expansion as commercial applications scale from pilot programs to business-as-usual operations. The convergence of artificial intelligence, advanced sensors, and increasingly autonomous flight capabilities is driving demand for more sophisticated drone platforms capable of operating beyond visual line of sight (BVLOS) with minimal human intervention.

The energy sector has emerged as the dominant vertical for commercial drone deployment, leveraging unmanned aerial systems for powerline inspection, wind turbine monitoring, oil and gas pipeline surveillance, and photovoltaic plant assessment. Drones offer compelling advantages over traditional inspection methods, delivering significant cost reductions compared to helicopter operations while enhancing worker safety and data quality. However, the highest growth trajectory belongs to cargo, courier services, intralogistics, and warehousing applications, as regulatory frameworks evolve to accommodate routine BVLOS operations and companies like Zipline, Wing, and Manna demonstrate viable unit economics for last-mile and middle-mile delivery.

Mapping and surveying remains the predominant drone application method, underpinning use cases across construction, mining, agriculture, and infrastructure management. The combination of high-resolution optical sensors, LiDAR, and photogrammetry software enables rapid generation of accurate topographical data, digital elevation models, and 3D reconstructions. Inspection follows as the second-largest application category, with industrial facilities, utilities, and transportation infrastructure increasingly adopting drone-based visual asset management solutions. Photography and filming maintains strong demand driven by media, entertainment, real estate, and marketing applications.

Asia dominates the commercial drone market, propelled by China's manufacturing supremacy and domestic market scale, alongside Japan's advanced regulatory environment and strong enterprise adoption. China accounts for approximately 70-80% of global commercial drone production, with DJI maintaining commanding market share. The Middle East and Africa region is projected to achieve the fastest growth rate, driven by infrastructure investment, oil and gas sector requirements, and progressive regulatory frameworks in markets such as the UAE. North America and Europe continue to represent substantial markets, though regulatory complexity-particularly around BVLOS operations-has constrained growth relative to regions with more permissive approaches.

The trajectory toward routine autonomous operations, enabled by advances in unmanned traffic management (UTM), detect-and-avoid (DAA) systems, and artificial intelligence, will fundamentally reshape market dynamics through 2036, unlocking applications that remain constrained today by regulatory and technological barriers.

The global drones market is entering a transformative decade as unmanned aerial systems (UAS) transition from emerging technology to essential business infrastructure across industries worldwide. This comprehensive market research report delivers an authoritative analysis of the commercial and recreational drone industry, providing stakeholders with actionable intelligence on market size, growth trajectories, technological developments, regulatory frameworks, and competitive dynamics through 2036.

The drone industry stands at a critical inflection point. Regulatory advancements enabling beyond visual line of sight (BVLOS) operations, breakthroughs in autonomous flight capabilities, and proven unit economics across delivery and inspection applications are converging to unlock unprecedented market expansion. This report examines the complete drone ecosystem-from hardware manufacturers and software providers to service operators and end-users-across all major geographic markets and industry verticals. Drawing on extensive primary research including industry case studies from PwC's "Skies Without Limits" series, regulatory analysis spanning FAA, EASA, CAA, and CAAC frameworks, and granular market forecasting by segment, application, and region, this study provides the definitive resource for drone market intelligence.

Key applications analyzed include mapping and surveying, which remains the dominant drone application method, followed by infrastructure inspection and photography and filming. The energy sector leads industry adoption, deploying drones for powerline inspection, wind turbine monitoring, and oil and gas pipeline surveillance. Meanwhile, cargo, courier services, intralogistics, and warehousing applications demonstrate the highest growth rates as last-mile and middle-mile delivery operations achieve commercial viability.

Geographically, Asia dominates the commercial drone market, led by China's manufacturing prowess and Japan's progressive regulatory environment. The Middle East and Africa region is projected to achieve the fastest growth, driven by infrastructure investment and favorable regulatory frameworks. The report provides detailed country-level analysis for the United States, Canada, Brazil, Germany, United Kingdom, France, China, Japan, South Korea, and Australia.

Report Contents Include:

  • Executive summary with market forecasts, funding analysis, and scenario projections through 2036
  • Comprehensive introduction covering drone classifications, configurations, autonomy levels, and sensor fusion technologies
  • Global regulatory framework analysis including FAA Part 107/108, EASA U-Space, UK CAA SORA, and agricultural chemical application regulations
  • Detailed market and application analysis spanning agriculture, industrial inspection, logistics and delivery, military and defense, disaster response, survey and mapping, construction, and telecommunications
  • Key technology deep-dives on SLAM, flight control systems, AI/machine learning, 5G connectivity, and swarm control
  • Extensive sensor analysis including emerging image sensors, SWIR, hyperspectral, LiDAR, gas sensors, and e-nose technologies
  • Granular market forecasts by volume, revenue, segment, industry, region, and country
  • Barriers to growth analysis covering perception, regulatory, technology, implementation, and skills challenges
  • Supply chain analysis examining component manufacturing, geographic concentration, and reshoring trends
  • Future outlook with scenario analysis, emerging applications, and technology roadmap
  • 155 company profiles with strategic assessments

Companies Profiled include A2Z Drone Delivery, ACSL, Aerones, AeroVironment, Inc., AgAbove, Agri Spectra AI, AirKamuy, Alphabet (Wing), Alpine Eagle, Altitude Angel, Amazon Prime Air, Anduril, ARX Robotics, Ascent Aerosystems, Asylon, Aurea Avionics, Autel Robotics, Auterion, Auto Spray Systems, Aviant, Azur Drones, BAVOVNA MILTECH, Blue Innovation Co. Ltd., Blueye Robotics, Blueflite, Bone AI, BonV Aero, BRINC, Bristow, CATL, Cambridge Aerospace, Cleo Robotics, Cropim, Cyberhawk, Destinus, DEXA, DMR Technologies, DJI, Donaustahl, Draganfly, Inc., Dronamics, DroneSec, Drone Ag, DroneUp, Eagle Brother, Elroy Air, Embention, EndureAir, Exyn Technologies, EuroAtlas, F-drones, Firestorm, Flyability, Flybotix, Flytrex, Fuvex, Garuda Aerospace, GuardianSkies Drones, HayBeeSee, Hammer Missions, Harmattan AI, Helsing, Heven, Hoverfly Technologies, Huless, Impossible Aerospace, InDro Robotics, Infineon, IO TechWorld, Keen AI, Manna, Marut Drones, Matternet, Microdrones, MightyFly, M-Fly, MMC, Monopulse, Nearthlab, Nomadic Drones, Nova Sky Stories, Oceanic Constellations, Orbotix, Pablo Air (Volk), Parrot, Percepto, Pyka, Quantum-Systems, Raphe mPhibr, Redwing and more......

Table of Contents

1 EXECUTIVE SUMMARY

  • 1.1 Report Scope and Objectives
    • 1.1.1 Market Definition and Boundaries
  • 1.2 Major Applications and Growth Trends
    • 1.2.1 Overview of Major Application Areas
      • 1.2.1.1 Agriculture (Precision Farming)
      • 1.2.1.2 Industrial and Infrastructure Inspection
      • 1.2.1.3 Logistics and Cargo Delivery
      • 1.2.1.4 Military and Defence
      • 1.2.1.5 Public Safety and Emergency Response
      • 1.2.1.6 Survey, Mapping, and Construction
      • 1.2.1.7 Recreational and Consumer
    • 1.2.2 Cost Composition and Value Distribution
    • 1.2.3 Market Trends
      • 1.2.3.1 Autonomy Advancement
      • 1.2.3.2 Sensor Proliferation
      • 1.2.3.3 Regulatory Harmonization
  • 1.3 Drone Industry Funding and Investment
  • 1.4 Market Forecasts
    • 1.4.1 Drone market: commercial vs. recreational 2023-2036
    • 1.4.2 Drone market size by industry 2023-2036
    • 1.4.3 Drone market size by method 2023-2036
    • 1.4.4 Global Drone Market Revenue Forecast by Scenarios 2026-2036
      • 1.4.4.1 Global Drone Market Revenue Forecast: Base Case Scenario
      • 1.4.4.2 Global Drone Market Revenue Forecast: Optimistic Scenario
    • 1.4.5 Global Drone Market Revenue Forecast: Pessimistic Scenario
    • 1.4.6 Drones Sensor Market Size Forecast (2026-2036) - By Technology
    • 1.4.7 Drones Sensor Market Size Forecast (2026-2036) - By Application

2 INTRODUCTION

  • 2.1 What is a Drone?
    • 2.1.1 Definition and Classification
    • 2.1.2 Drone configurations/designs
      • 2.1.2.1 Multi-Rotor Configurations
      • 2.1.2.2 Fixed-Wing Configurations
      • 2.1.2.3 Hybrid VTOL (Vertical Takeoff and Landing)
      • 2.1.2.4 Specialized Configurations
    • 2.1.3 UAV vs UAS Terminology
    • 2.1.4 Categories by Size, Weight, and Capability
  • 2.2 Industry Introduction
    • 2.2.1 Historical Development
    • 2.2.2 Current State of the Market
    • 2.2.3 Key Stakeholders and Value Chain
    • 2.2.4 Drone application categories and methods
    • 2.2.5 Drone industry verticals and use cases
  • 2.3 Methods
    • 2.3.1 Photography & Filming
    • 2.3.2 Mapping & Surveying
    • 2.3.3 Inspection
    • 2.3.4 Localization & Tracking
    • 2.3.5 Spraying & Dispensing
    • 2.3.6 Delivery
    • 2.3.7 Others
      • 2.3.7.1 Communications Relay
      • 2.3.7.2 Atmospheric Sampling
      • 2.3.7.3 Light Shows/Entertainment
      • 2.3.7.4 Wildlife Management
      • 2.3.7.5 Construction/Manufacturing
      • 2.3.7.6 Tethered Persistent Surveillance
  • 2.4 Sensor Fusion
    • 2.4.1 Multi-Sensor Integration Fundamentals
  • 2.5 Levels of Autonomy (Remote Piloted to Fully Autonomous)
    • 2.5.1 Roadmap to Full Autonomy

3 GLOBAL REGULATORY FRAMEWORK

  • 3.1 Regulations Overview
    • 3.1.1 High-Level Regulatory Requirements by Country
    • 3.1.2 Global Drone Regulations Comparison Matrix
    • 3.1.3 Risk-Based Regulatory Approaches
      • 3.1.3.1 SORA Methodology Overview
  • 3.2 China
    • 3.2.1 CAAC Regulatory Framework
    • 3.2.2 BVLOS Progress and Restrictions
    • 3.2.3 Agricultural Drone Management Progress
    • 3.2.4 Commercial Operations Status
  • 3.3 United States
    • 3.3.1 Airspace and Pilot Licensing Framework
    • 3.3.2 FAA Part 107 Current Requirement
    • 3.3.3 Emerging BVLOS Regulation
    • 3.3.4 FAA Part 108 BVLOS Regulations
    • 3.3.5 Section 44807 Airworthiness Waivers
    • 3.3.6 FAR 91.113 BVLOS Flight Allowances
    • 3.3.7 UAS Part 135 Certificate Pathway
    • 3.3.8 Blue UAS Program and NDAA Restrictions
    • 3.3.9 Agricultural Drone Management Progress
  • 3.4 European Union
    • 3.4.1 EASA Framework Overview
    • 3.4.2 Operational Categories and Risk-Based Oversight
    • 3.4.3 Open, Specific, and Certified Categories
    • 3.4.4 U-Space Legal Requirements
    • 3.4.5 BVLOS LUC (Light UAS Operator Certificate)
    • 3.4.6 SORA Implementation and Timeline
    • 3.4.7 Agricultural Drone Pesticide Management
  • 3.5 United Kingdom
    • 3.5.1 CAA Regulatory Approach
    • 3.5.2 Current Permission Structure
    • 3.5.3 SORA-Style Framework
    • 3.5.4 TDA Limitations and Constraints
    • 3.5.5 DiSCO Project and PDRA-01 Tool
    • 3.5.6 OSC (Operational Safety Case) Requirements
    • 3.5.7 Future of Flight Action Plan
    • 3.5.8 Comparison: UK 1600-Page vs US 50-Page Submissions
    • 3.5.9 Risk Ownership: CAA vs Operator Accountability
  • 3.6 Brazil
    • 3.6.1 Drone Regulation Overview
    • 3.6.2 ANAC and DECEA Requirements
    • 3.6.3 Agricultural Applications Framework
  • 3.7 Other Key Markets
    • 3.7.1 Japan Regulatory Framework
    • 3.7.2 South Korea Regulations
    • 3.7.3 Australia CASA Approach
    • 3.7.4 UAE and Gulf Countries
    • 3.7.5 India DGCA Framework
  • 3.8 Agricultural Chemical Application Regulations

4 MARKETS AND APPLICATIONS

  • 4.1 Commercial Market Overview
    • 4.1.1 Drones: Application Pipeline Overview
    • 4.1.2 Drones: Application Pipeline - Near-Term (2026-2028)
    • 4.1.3 Drones: Application Pipeline - Medium-Term (2029-2032)
  • 4.2 Agricultural Drones
    • 4.2.1 Industry Value Chain
      • 4.2.1.1 Hardware
      • 4.2.1.2 Software/Services
      • 4.2.1.3 End Users
    • 4.2.2 Main Applications
      • 4.2.2.1 Overview of Agricultural Drone Applications
      • 4.2.2.2 Mainstream Agricultural Drone Types
    • 4.2.3 Spraying and Seeding
    • 4.2.4 Crop Monitoring and Analysis
      • 4.2.4.1 Vegetation Health Assessment
      • 4.2.4.2 Stress Detection and Problem Identification
      • 4.2.4.3 Stand Assessment and Yield Prediction
    • 4.2.5 Sensor Technology in Agriculture
      • 4.2.5.1 RGB and Multispectral Sensors
      • 4.2.5.2 Advanced Sensor Technologies
      • 4.2.5.3 Multi-Sensor Integration
    • 4.2.6 Autonomy and BVLOS in Agriculture
      • 4.2.6.1 Current Autonomy Levels in Agriculture
      • 4.2.6.2 BVLOS Requirements and Opportunities
      • 4.2.6.3 UK Agricultural BVLOS Constraints
    • 4.2.7 Forest Inventory
    • 4.2.8 Reforestation with Drones and AI
    • 4.2.9 Forest Recovery
    • 4.2.10 Companies
  • 4.3 Industrial and Infrastructure Inspection
    • 4.3.1 Overview
      • 4.3.1.1 Industrial and Infrastructure Inspection (Power Grids, Wind Turbines, Oil & Gas Pipelines)
      • 4.3.1.2 Visual Asset Management (VAM) Integration
    • 4.3.2 Linear Asset Inspection
      • 4.3.2.1 Power Lines, Pipelines, Railways
      • 4.3.2.2 Power Transmission Line Inspection
      • 4.3.2.3 Pipeline Inspection
      • 4.3.2.4 Railway Inspection
    • 4.3.3 Close-Range Precision Inspection
      • 4.3.3.1 Infrastructure, Power, Wind Turbines
    • 4.3.4 Special Environments
      • 4.3.4.1 Confined Spaces / NDT Testing
    • 4.3.5 Methane and Emissions Monitoring
      • 4.3.5.1 Methane / Emissions Monitoring (ESG & Compliance)
      • 4.3.5.2 Methane Detection Technologies
    • 4.3.6 Data Platforms and Services
      • 4.3.6.1 Data Platforms & Services (AI / Digital Twin)
    • 4.3.7 Energy
      • 4.3.7.1 Powerline Inspection
      • 4.3.7.2 Photovoltaic Plant Monitoring
      • 4.3.7.3 Offshore FPSO Platform Inspection
      • 4.3.7.4 Pipeline Oil Aerial Inspection & 3D Modeling
      • 4.3.7.5 Pumped Hydropower Plant Surveying
      • 4.3.7.6 Inspection of Oil Storage Tanks
      • 4.3.7.7 Inspection of Lightning Protection System in Wind Turbines
      • 4.3.7.8 Power Grid Check
      • 4.3.7.9 Oil Pipe Remote Inspect
    • 4.3.8 Industrial Plants
      • 4.3.8.1 Thermal Roof Inspections
      • 4.3.8.2 Perimeter Security Patrols
      • 4.3.8.3 Cleaning An Elevated Water Tower
      • 4.3.8.4 Clinker Silo Roof Inspection
      • 4.3.8.5 Roof Measurement and Inspection
      • 4.3.8.6 Pest Nest Elimination
      • 4.3.8.7 Tailings Dam Monitoring
      • 4.3.8.8 Automated Surveys In The Context of Dam Safety
      • 4.3.8.9 Boiler Burner Inspection
    • 4.3.9 Transportation Infrastructure
      • 4.3.9.1 Railway Inspection
      • 4.3.9.2 Aircraft Inspection
      • 4.3.9.3 Mapping of Urban Air Mobility Network
    • 4.3.10 Waste Management and Remediation Services
      • 4.3.10.1 Landfill Monitoring
      • 4.3.10.2 Cleaning Radioactive Waste Storage
      • 4.3.10.3 Wastewater Treatment Plant Surveying
  • 4.4 Logistics and Cargo Delivery
    • 4.4.1 Overview
      • 4.4.1.1 Logistics and Cargo Delivery (Last-mile, Emergency Supplies)
      • 4.4.1.2 Last-Mile, Mid-Mile, and Long-Haul Drone Delivery
    • 4.4.2 Commercialization
    • 4.4.3 Last-Mile Delivery Economics
      • 4.4.3.1 Cost Structure Analysis
    • 4.4.4 Middle-Mile Delivery
    • 4.4.5 Payload Capacity up to 350kg
    • 4.4.6 Multi-Mission Capability (Deliver, Drop, Detect)
    • 4.4.7 Economic advantages over traditional manned airfreight
    • 4.4.8 Low-cost Self-flying Cargo Aircraft
    • 4.4.9 Antarctic research operations
    • 4.4.10 Companies
    • 4.4.11 Medical and Emergency Delivery
      • 4.4.11.1 Blood and Medical Supply Delivery
      • 4.4.11.2 Emergency Response Applications
  • 4.5 Military and Defence
    • 4.5.1 Overview
    • 4.5.2 Loitering Munitions
    • 4.5.3 Tactical UAVs
    • 4.5.4 Ukraine Conflict Case Studies
      • 4.5.4.1 Commercial Drone Adaptation
      • 4.5.4.2 First-Person View (FPV) Drones
      • 4.5.4.3 Strategic Implications
  • 4.6 Disaster Response and Public Safety
    • 4.6.1 Overview
    • 4.6.2 Law Enforcement
    • 4.6.3 Fire and Emergency Response
    • 4.6.4 Thermal and Sensor Payloads
    • 4.6.5 Detection and Security
    • 4.6.6 Unmanned Aerial Wildfire Ignitions
    • 4.6.7 Drone as a First Responder
    • 4.6.8 Emergency & Security Surveillance
    • 4.6.9 Firefighting Support
    • 4.6.10 Forensic Investigation Following Fire
  • 4.7 Survey and Mapping
    • 4.7.1 Land Survey and Geospatial Applications
    • 4.7.2 Construction Site Monitoring
    • 4.7.3 Mining Operations
      • 4.7.3.1 Mining Operations Monitoring
      • 4.7.3.2 Surveying Underground Mines
      • 4.7.3.3 Seismic Event Inspections
      • 4.7.3.4 Calculate Mining Excavation Volumes
      • 4.7.3.5 Mineral Surveying
  • 4.8 Construction
    • 4.8.1 Geomagnetic Detection
    • 4.8.2 Construction Site Surveying
    • 4.8.3 Site Progress Monitoring
  • 4.9 Telecommunications
    • 4.9.1 Network coverage
    • 4.9.2 Tower Inspection & Management
    • 4.9.3 Antenna Testing

5 KEY TECHNOLOGIES

  • 5.1 Software and Navigation
    • 5.1.1 Fundamentals
      • 5.1.1.1 Software for Robotics
    • 5.1.2 Different Abstraction Levels
      • 5.1.2.1 Low-Level Control (Microseconds to Milliseconds)
      • 5.1.2.2 Mid-Level Control (Milliseconds to Seconds)
      • 5.1.2.3 High-Level Planning (Seconds to Minutes)
      • 5.1.2.4 Application Layer (Minutes to Hours)
    • 5.1.3 Localization and Mapping
      • 5.1.3.1 GNSS-Based Positioning
      • 5.1.3.2 Vision-Based Positioning
    • 5.1.4 Flight Control Systems
      • 5.1.4.1 Overview
      • 5.1.4.2 Autopilot Technologies
      • 5.1.4.3 Fail-Safe Mechanisms
    • 5.1.5 SLAM Technologies
      • 5.1.5.1 Visual SLAM vs LiDAR SLAM
      • 5.1.5.2 Multi Sensor SLAM
    • 5.1.6 AI and Machine Learning
      • 5.1.6.1 Vision Language Action (VLA) Models for Robotics
  • 5.2 Communication and Networking
    • 5.2.1 Command and Control
      • 5.2.1.1 Link Architecture
      • 5.2.1.2 Latency Requirements
      • 5.2.1.3 Security Considerations
    • 5.2.2 Cellular Networks
      • 5.2.2.1 Communication and Networking: Cellular Networks
      • 5.2.2.2 Cellular Applications in Drone Operations
    • 5.2.3 5G Readiness by Region
      • 5.2.3.1 5G Readiness for Drone Operations
      • 5.2.3.2 5G Readiness: UK and Europe
      • 5.2.3.3 5G Readiness: USA
      • 5.2.3.4 5G Readiness: China
      • 5.2.3.5 5G Readiness: UAE and Other Gulf Countries
  • 5.3 Swarm Control
    • 5.3.1 Fundamentals
    • 5.3.2 Control Modes and Technologies
      • 5.3.2.1 Centralized Control
      • 5.3.2.2 Hierarchical Control
      • 5.3.2.3 Distributed Control
    • 5.3.3 Entertainment Applications
    • 5.3.4 Defence Applications
    • 5.3.5 Commercial Applications
    • 5.3.6 Companies
    • 5.3.7 Readiness and Future Outlook
      • 5.3.7.1 Technical Challenges
      • 5.3.7.2 Future Outlook for UAV Swarm Control

6 SENSORS IN DRONES

  • 6.1 Emerging Image Sensors
    • 6.1.1 Overview
    • 6.1.2 SWIR Imaging
    • 6.1.3 OPD-on-CMOS
    • 6.1.4 Quantum Dot Imaging
    • 6.1.5 Hyperspectral Imaging
    • 6.1.6 Miniaturized Spectrometers
    • 6.1.7 Event-Based Sensing
    • 6.1.8 LiDAR
    • 6.1.9 Cameras
      • 6.1.9.1 RGB Cameras
      • 6.1.9.2 Multispectral Cameras
      • 6.1.9.3 Thermal Cameras
    • 6.1.10 Miniaturized Gas Sensors
    • 6.1.11 Companies
  • 6.2 Gas Sensors
    • 6.2.1 Overview
    • 6.2.2 Metal Oxide (MOx) Sensors
    • 6.2.3 Electrochemical Sensors
    • 6.2.4 Infrared Sensors
    • 6.2.5 Photoionization Detectors
    • 6.2.6 Optical Particle Counters
    • 6.2.7 Photoacoustic Sensors
    • 6.2.8 E-Nose Technology
  • 6.3 AI
    • 6.3.1 Fundamentals
    • 6.3.2 Learning Approaches
      • 6.3.2.1 Supervised Learning
      • 6.3.2.2 Unsupervised Learning
      • 6.3.2.3 Reinforcement Learning
      • 6.3.2.4 Transfer Learning
    • 6.3.3 Neural Networks
      • 6.3.3.1 Convolutional Neural Networks
      • 6.3.3.2 Transformer Networks
      • 6.3.3.3 Point Cloud Networks

7 MARKET FORECASTS

  • 7.1 Volume Forecasts
  • 7.2 Revenue Forecasts
  • 7.3 Commercial Drone Market by Segment
    • 7.3.1 Commercial Drone Market Size 2025-2036 by Segment
    • 7.3.2 Commercial Drone Market Size 2025-2036 by Region
  • 7.4 Commercial Drone Market by Industry
    • 7.4.1 Commercial Drone Market Size 2025-2036 by Industry
    • 7.4.2 Commercial Drone Market Size 2025-2036 by Industry & Region
  • 7.5 Commercial Drone Market by Unit Sales
    • 7.5.1 Commercial Drone Unit Sales 2025-2036
    • 7.5.2 Commercial Drone Unit Sales 2025-2036 by Region
  • 7.6 Recreational Drone Market by Segment
    • 7.6.1 Recreational Drone Market Size 2025-2036 by Segment
    • 7.6.2 Recreational Drone Market Size 2025-2036 by Region
  • 7.7 Recreational Drone Market by Unit Sales
    • 7.7.1 Recreational Drone Unit Sales 2025-2036
    • 7.7.2 Recreational Drone Unit Sales 2025-2036 by Region
  • 7.8 Total Drone Market by Region & Country
    • 7.8.1 Regional & National Drone Market
    • 7.8.2 Market Size 2025-2036 by Region
    • 7.8.3 North American Drone Market
      • 7.8.3.1 Drone Market USA
      • 7.8.3.2 Drone Market Canada
    • 7.8.4 South American Drone Market
      • 7.8.4.1 Drone Market Brazil
    • 7.8.5 European Drone Market
      • 7.8.5.1 Drone Market Germany
      • 7.8.5.2 Drone Market United Kingdom
      • 7.8.5.3 Drone Market France
    • 7.8.6 Middle East & African Drone Market
    • 7.8.7 Asian Drone Market
      • 7.8.7.1 Drone Market China
      • 7.8.7.2 Drone Market Japan
      • 7.8.7.3 Drone Market South Korea
    • 7.8.8 Oceanian Drone Market
  • 7.9 Scenario Analysis
    • 7.9.1 Base Case Scenario Analysis
    • 7.9.2 Optimistic Scenario Analysis (Accelerated Regulation)
    • 7.9.3 Pessimistic Scenario Analysis (Regulatory Delays)
  • 7.10 Sensor Market Forecasts
    • 7.10.1 Sensor per Drone Forecast (2026-2036)
    • 7.10.2 Drone Sensor Market Size Forecast - By Technology
    • 7.10.3 Drone Sensor Market Size Forecast - By Application
    • 7.10.4 Drone Sensor Market Size Forecast - By Region

8 BARRIERS TO GROWTH ANALYSIS

  • 8.1 Overview
  • 8.2 Perception Barriers
    • 8.2.1 Privacy Concerns
    • 8.2.2 Safety Perception
    • 8.2.3 Noise and Nuisance
  • 8.3 Regulatory Barriers
    • 8.3.1 BVLOS Authorization Complexity
    • 8.3.2 Fragmented Global Framework
    • 8.3.3 Chemical and Sector-Specific Barriers
  • 8.4 Technology Barriers
    • 8.4.1 Detect and Avoid
    • 8.4.2 Endurance and Range
    • 8.4.3 Payload Limitations
  • 8.5 Implementation Barriers
    • 8.5.1 Integration with Existing Systems
    • 8.5.2 Operational Infrastructure
    • 8.5.3 Return on Investment Uncertainty
    • 8.5.4 Pilot and Operator Availability
    • 8.5.5 Domain Expertise Integration
    • 8.5.6 Continuous Learning Requirements

9 SUPPLY CHAIN ANALYSIS

  • 9.1 Overview
  • 9.2 Component Analysis
    • 9.2.1 Propulsion Systems
    • 9.2.2 Power Systems
    • 9.2.3 Flight Control and Navigation
    • 9.2.4 Sensors and Payloads
  • 9.3 Regional Supply Chain Analysis
    • 9.3.1 China
    • 9.3.2 United States
    • 9.3.3 Europe
    • 9.3.4 Other Regions
  • 9.4 Supply Chain Risks and Resilience
    • 9.4.1 Concentration Risks
    • 9.4.2 Mitigation Strategies

10 FUTURE OUTLOOK

  • 10.1 Technology Trajectory
    • 10.1.1 Autonomy Evolution
    • 10.1.2 Platform Evolution
    • 10.1.3 Sensor and Payload Evolution
    • 10.1.4 Communication and Connectivity Evolution
  • 10.2 Market Evolution
    • 10.2.1 Application Maturation Pathways
    • 10.2.2 Industry Structure Evolution
    • 10.2.3 Geographic Market Evolution
  • 10.3 Regulatory Evolution
    • 10.3.1 BVLOS Framework Development
    • 10.3.2 Airspace Integration Evolution
  • 10.4 Emerging Applications
    • 10.4.1 Urban Air Mobility Convergence
    • 10.4.2 Swarm Applications Commercialization
    • 10.4.3 Autonomous Network Operations
  • 10.5 Societal and Economic Impact
    • 10.5.1 Economic Contribution Projections
    • 10.5.2 Employment Impact
    • 10.5.3 Environmental Impact

11 COMPANY PROFILES (155 company profiles)

12 APPENDICES

  • 12.1 Methodology
    • 12.1.1 Market Sizing Approach
    • 12.1.2 Forecast Methodology
  • 12.2 Glossary
    • 12.2.1 General Glossary Terms
    • 12.2.2 Technical Terms
    • 12.2.3 Regulatory Terms

13 REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제