![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1358191
¿§Áö AI ¾×¼¿·¯·¹ÀÌÅÍ - »õ·Î¿î ºñÁö´Ï½º ±âȸ ºÐ¼®Edge AI Accelerators-Emerging Opportunity Analysis |
È®ÀåÇÏ´Â IoT ¾ÖÇø®ÄÉÀ̼ÇÀÌ ¼ºÀåÀ» ÁÖµµ
½Ç½Ã°£ µö·¯´× ¿öÅ©·Îµå¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, µð¹ÙÀ̽º¿¡¼ ºü¸¥ µö·¯´×À» °¡´ÉÇÏ°Ô Çϴ Ư¼ö ¿§Áö AI Çϵå¿þ¾î°¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý AI ¹æ½ÄÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ³·Àº Áö¿¬ ½Ã°£, ³ôÀº ´ë¿ªÆøÀ» º¸ÀåÇÒ ¼ö ¾ø½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸¹Àº AI ¿öÅ©·Îµå°¡ ¿§Áö·Î À̵¿Çϰí ÀÖÀ¸¸ç, ¿Âµð¹ÙÀ̽º ¸Ó½Å·¯´× Ã߷п¡ Æ¯ÈµÈ AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
IoTÀÇ ¼ºÀå, °¡Àü ¹× ÀÚµ¿Â÷ »ê¾÷ÀÇ ½º¸¶Æ® ±â¼ú äÅÃ, Áö´ÉÇü »ê¾÷ ÀÚµ¿È°¡ ¿§Áö AI °¡¼Ó±â ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù, ¿þ¾î·¯ºí, ½º¸¶Æ® °¡Àü µî ¼ÒºñÀÚ¿ë ¾ÖÇø®ÄÉÀ̼ÇÀÇ AI °¡¼Ó±â´Â ¼ÒÇüȻӸ¸ ¾Æ´Ï¶ó ³ôÀº 󸮷® ´ëºñ ºñ¿ë ´ëºñ ¼º´ÉÀÌ ¿ä±¸µË´Ï´Ù. ¹Ý¸é, »ê¾÷/±â¾÷¿ë ¾ÖÇø®ÄÉÀ̼ǿ¡ »ç¿ëµÇ´Â ´ëºÎºÐÀÇ AI °¡¼Ó±â´Â ³ôÀº ó¸® ¼Óµµ¿Í Àü·Â È¿À²ÀÌ °¡Àå Áß¿äÇÑ ¿ä±¸»çÇ×ÀÔ´Ï´Ù.
´ëºÎºÐÀÇ Ä¨ Á¦Á¶¾÷üµéÀº Àü·Â ¼Òºñ¸¦ ÁÙÀÌ¸é¼ Ã³¸® ¼Óµµ¸¦ ³ôÀÌ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§ÇØ ±â¾÷µéÀº ƯÁ¤ ¿ëµµÀÇ Ä¨, È¿À²ÀûÀΠĨ ¾ÆÅ°ÅØÃ³, »õ·Î¿î ¾Ë°í¸®Áò, ÷´Ü ¸Þ¸ð¸®, ´ëü Àç·á °³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸¸¦ Ȱ¿ëÇϱâ À§ÇØ ÁÖ¿ä ±â¾÷µéÀº Á¦ÈÞ, Àμö µîÀÇ ±â¼ú Àü·«À» µµÀÔÇϰí ÀÖ½À´Ï´Ù.
¿§Áö AI °¡¼Ó±â ½ÃÀåÀº ¹Ì±¹, Çѱ¹, Áß±¹, ÀϺ», µ¶ÀÏ, À̽º¶ó¿¤¿¡¼ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â °¡Àü, ÀÚµ¿Â÷, »ê¾÷ Àåºñ, ±¹¹æ °ü·Ã Á¦Á¶ Ȱµ¿ÀÌ È°¹ßÇϱ⠶§¹®ÀÔ´Ï´Ù. ÀÌµé ±¹°¡´Â °·ÂÇÑ Á¦Á¶ ±â¹Ý»Ó¸¸ ¾Æ´Ï¶ó Ĩ Á¦Á¶¸¦ À§ÇÑ °·ÂÇÑ »ýŰ踦 ±¸ÃàÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå¿¡¼ ¿ìÀ§¸¦ À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
µö·¯´×, ½Å°æ¸Á, ÄÄÇ»ÅÍ ºñÀü, Á¦³Ê·¹ÀÌÆ¼ºê ÀΰøÁö´É, ´º·Î¸ðÇÈ ÄÄÇ»ÆÃÀÇ µîÀåÀ¸·Î ¿§Áö Ãß·Ð ¾ÖÇø®ÄÉÀ̼ǿ¡ »õ·Î¿î ±âȸ°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ºÐ»êÇü ÄÄÇ»ÅÍ ¾ÆÅ°ÅØÃ³·Î ºü¸£°Ô ÀüȯÇÏ´Â ÇÑÆí, ÀÌ ±â¼úÀ» Àû¿ëÇÏ¿© »ý»ê¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â »õ·Î¿î ¹æ¹ýÀ» ¹è¿ì°í ÀÖ½À´Ï´Ù. µû¶ó¼ AI Ĩ °³¹ßÀÚµéÀº ÀÌ·¯ÇÑ »ç¿ë »ç·Êº° ¿ä±¸ »çÇ×À» ÃæÁ·Çϵµ·Ï ¼³°èµÈ ¼Ö·ç¼Ç °³¹ß¿¡ ´õ¿í ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.
ÀÌ Frost & SullivanÀÇ Á¶»ç º¸°í¼´Â ´ÙÀ½°ú °°Àº ÁÖÁ¦¸¦ ´Ù·ç°í ÀÖ½À´Ï´Ù:
Expanding IoT Applications Drive Growth
Specialized edge AI hardware that enables quick deep learning on-device has become essential due to the rising need for real-time deep learning workloads. Additionally, a cloud-based AI method cannot ensure data privacy, low latency, or offer high bandwidth. As a result, many AI workloads are shifting to the edge, increasing the demand for specialized AI hardware for on-device machine learning inference.
The growth of IoT, smart technology adoption by consumer electronics and the automotive industry, and intelligent industrial automation are propelling the edge AI accelerator market. AI accelerators in consumer-oriented applications, such as smartphones, wearables, and smart appliances, need to have a high processing-to-cost ratio as well as a smaller size. On the other hand, for most of the AI accelerators used in industrial/enterprise applications, the requirement for high processing speed and power efficiency are of prime significance.
The majority of chip manufacturers are struggling to improve processing speed while reducing power consumption. To overcome this, organizations are investing in developing application-specific chips, efficient chip architectures, new algorithms, advanced memories, and alternative materials. To leverage these technological advancements, major corporations are embracing technology strategies such as partnerships and acquisitions.
The market for edge AI accelerators is projected to grow significantly in the United States, South Korea, China, Japan, Germany, and Israel. This is due to the high amount of manufacturing activity pertaining to consumer electronics, automotive, industrial equipment, and defense. Apart from having a strong manufacturing base, these countries have also developed a strong ecosystem for chip manufacturing, which is crucial to maintaining a dominant position in the market.
The emergence of deep learning, neural networks, computer vision, generative artificial intelligence, and neuromorphic computing has created new opportunities for edge inferencing applications. While enterprises are quickly moving towards a decentralized computer architecture, they are also learning new methods to apply this technology to boost productivity and cut costs. Therefore, AI chip developers should focus more on developing solutions that are designed to fulfill these requirements specific to use cases.
This Frost & Sullivan research report covers the following topics: