![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1385540
ÈÇÐÁ¦Ç° ¹× Àç·á ¾÷°è¿ë »ý¼º AI : ±â¼ú Áøº¸¿Í ¼ºÀå ±âȸGenerative AI in the Chemicals and Materials Industry: Technology Advances and Growth Opportunities |
»ý¼º AIÀÇ ÅëÇÕ¿¡ ÀÇÇØ ROIÀÇ Çâ»ó°ú ¸¶ÁøÀÇ Áõ°¡¿¡ ÀÇÇÑ º¯ÇõÀû ¼ºÀåÀÌ ¾à¼ÓµÈ´Ù.
»ý¼º AI´Â ÈÇÐÁ¦Ç° ¹× Àç·á ¾÷°èÀÇ °ÔÀÓ Ã¼ÀÎÀú·Î¼ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÷´Ü ±â°èÇнÀ°ú ¹æ´ëÇÑ µ¥ÀÌÅÍ ¸®¼Ò½º¸¦ Á¶ÇÕÇÑ Å×Å©³î·¯Áö´Â Çõ½Å, È¿À²¼º, ģȯ°æ ½ÇõÀ» ÃßÁøÇÏ´Â °ÍÀ¸·Î, ¾÷°è¸¦ º¯ÇõÇÒ °¡´É¼ºÀ» ³»Æ÷Çϰí ÀÖ½À´Ï´Ù. »ý¼º AI´Â ¿¬±¸°³¹ß(R&D)ÀÇ ½Å¼Óȸ¦ °¡´ÉÇÏ°Ô Çϸç, ŸÀÓ¶óÀÎÀÇ ´ÜÃà°ú ºñ¿ë »è°¨À» ÃÊ·¡ÇÕ´Ï´Ù. Àç·áÀÇ ÃÖÀûȰ¡ °¡´ÉÇÏ°Ô µÇ¸ç, Á¦Ç°ÀÇ ¼º´É°ú Áö¼Ó°¡´É¼ºÀÌ Çâ»óÇÕ´Ï´Ù. ¿¹Áöº¸Àü°ú °ø±Þ¸ÁÀÇ ÃÖÀûȰ¡ °¡´ÉÇÏ°Ô µÇ¸ç, ´Ù¿îŸÀÓÀÇ »è°¨°ú ¹°·ùÀÇ È¿À²È°¡ ½ÇÇöµË´Ï´Ù. ÀÌ¿Í °°ÀÌ »ý¼º AI´Â ºñ¿ë È¿À²ÀÌ ³ôÀº ¹æ¹ýÀ¸·Î, Âü½ÅÇÑ Àç·á¿Í ģȯ°æ °üÇà¿¡ ´ëÇÑ ¾÷°èÀÇ ³ô¾ÆÁö´Â ¼ö¿ä¿¡ ´ëÀÀÇÒ °¡´É¼ºÀ» ³»Æ÷Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª º¹ÀâÇÑ ±ÔÁ¦ »óȲ, AI¿Í µ¥ÀÌÅÍ »çÀ̾ð½ºÀÇ ÀÎÀç °ÝÂ÷, °íǰÁú µ¥ÀÌÅÍÀÇ Çʿ伺 µîÀÌ °úÁ¦ÀÔ´Ï´Ù.
ÀÌ Á¶»ç ¼ºñ½º¿¡¼´Â ÈÇÐÁ¦Ç° ¹× Àç·á ¾÷°èÀÇ ´Ù¾çÇÑ ºñÁö´Ï½º ±â´É¿¡¼ ÆäÀÎÆ÷ÀÎÆ®¸¦ ½Äº°Çϰí, »ý¼º AI¸¦ Ȱ¿ëÇÏ¿© ÇØ°áÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ÆÇ´ÜÇÕ´Ï´Ù. »ý¼º AI°¡ º¸Æ²³Ø¿¡ ÇØ°áÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ½Ã°£¹üÀ§¿Í ÇÔ²² ¾÷°è¿¡¼ »ý¼º AIÀÇ ¿µÇ⠺м®À» Á¦½ÃÇÕ´Ï´Ù. ¶ÇÇÑ ÅõÀÚ »óȲÀ» Á¶»çÇßÀ¸¸ç, ÀÌ ºÐ¾ß¿¡¼ ÁÖ¿ä »ê¾÷¡¤Çмú ±â¾÷À» ½Äº°Çϰí, ÈÇÐÁ¦Ç° ¹× Àç·á ¾÷°è¿ë »ý¼º AI Å×Å©³î·¯ÁöÀÇ °³¹ß°ú äÅÃÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¼ºÀå ±âȸ¸¦ °Á¶Çϰí ÀÖ½À´Ï´Ù. ±âÁسâÀº 2022³â, ¿¹Ãø ±â°£Àº 2023-2030³âÀÔ´Ï´Ù.
Generative AI Integration Promises Transformational Growth with Higher ROI and Increased Margins
Generative artificial intelligence (GenAI) is emerging as a game changer in the chemicals and materials industry. This technology, which combines advanced machine learning with vast data resources, has the potential to transform the industry by driving innovation, efficiency, and ecologically sound practices. Gen AI allows for faster research and development (R&D), resulting in shorter timelines and lower costs. It enables material optimization, which improves product performance and sustainability. Predictive maintenance and supply chain optimization are now possible, resulting in reduced downtime and more efficient logistics. Thus, GenAI has the potential to address the industry's growing demand for novel materials and environmentally friendly practices in a cost-efficient manner. However, complex regulatory landscapes, a talent gap in AI and data science, and the need for high-quality data present challenges.
This research service identifies the pain points across various business functions in the chemicals and materials industry, determining how they can be addressed by harnessing Gen AI. It presents an impact analysis of GenAI in the industry, along with a timeframe in which GenAI is expected to address bottlenecks. The study also examines the investment landscape, identifies the key industrial and academic players in this space, and highlights growth opportunities enabling the development and adoption of Gen AI technology in the chemicals and materials industry. The base year is 2022, and the forecast period is from 2023 to 2030.