![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1398862
´ÜÀϼ¼Æ÷ ºÐ¼® : ±â¼ú ¼ºÀå ±âȸSingle-cell Analysis: Technology Growth Opportunities |
´ÜÀÏ ¼¼Æ÷ ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀº »õ·Î¿î Áø´Ü ¹× Ä¡·á ±âȸ¸¦ ÃËÁøÇÕ´Ï´Ù.
´ÜÀÏ ¼¼Æ÷ ºÐ¼®Àº ¼¼Æ÷ ³» À¯ÀüüÇÐ, Àü»çüÇÐ, ´Ü¹éüÇÐ, ´ë»çüÇÐ ¹× ±âŸ ¼¼Æ÷ °£ »óÈ£ ÀÛ¿ëÀ» ¿¬±¸ÇÏ¿© ÀÌÁúÀûÀÎ ¼¼Æ÷ Áý´Ü »ùÇÃÀÇ »óŸ¦ Áø´ÜÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¾¾çÀÇ ¹Ì¼¼ ȯ°æÀ» ´õ Àß ÀÌÇØÇÏ°í ´Ù¾çÇÑ À¯ÇüÀÇ Á¾¾ç¿¡ ´ëÇÑ »õ·Î¿î Áö½ÄÀ» ¹ÙÅÁÀ¸·Î ¾à¹°À» °³¹ßÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®¹ýÀ» ÅëÇØ ¾òÀº dzºÎÇÑ µ¥ÀÌÅÍ´Â À¯ÀüÀÚ ¹ßÇö°ú º´¸®¸¦ °áÁ¤ÇÏ´Â ´Ù¸¥ ¿äÀο¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.
ÀÌ ¹æ¹ýÀº ÀÌ¹Ì Á¸ÀçÇÏ´Â Áø´Ü ¹× ½Å¾à°³¹ß ¹æ¹ýÀ» ¹ßÀü½ÃŰ´Â °ÍÀ̱⠶§¹®¿¡ ÅõÀÚÀÚ¿Í ¿¬±¸±â°üÀÇ °ü½ÉÀ» ¹Þ°í ÀÖÁö¸¸, ±â¼ú Ç÷§ÆûÀÇ ¹ßÀüÀ¸·Î ±Øº¹ÇØ¾ß ÇÒ ±â¼úÀû °úÁ¦¿Í Áß¼Ò±â¾÷ÀÌ Á¦°øÇÒ ¼ö ¾ø´Â ¿£µåÅõ¿£µå ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ±îÁö ¼ºÀåÇÑ ´ëÇü ½ÃÄö½Ì ±â¾÷ÀÇ µ¶°úÁ¡ µî Ä¡¿ÇÑ °æÀï ȯ°æÀÌ Á¸ÀçÇÕ´Ï´Ù.
¸¹Àº ±â¾÷µéÀÌ °Ô³ðÀ̳ª Àü»çü ¼öÁØÀÇ ´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» Çϰí ÀÖÁö¸¸, ÇÁ·ÎÅ׿À¹Í½º³ª ¸ÖƼ¿À¹Í½ºÀÇ ´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» ÇÏ´Â ±â¾÷Àº ¸¹Áö ¾Ê½À´Ï´Ù. ±â¼úÀÇ ¹ßÀüÀº ¶óÀ̺귯¸® Áغñ ½Ã °íÀ¯ÇÑ ¹ÙÄÚµå ÇÁ·Î¼¼½º¸¦ ÅëÇÑ ´ÜÀÏ ¼¼Æ÷ ºÐ¸®¿Í °°Àº ¹ø°Å·Î¿î °úÁ¤À» ÇÇÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. °ø°£ ¿À¹Í½º ¹× ¶óÀÌºê ¼¿ ½ÃÄö½Ì°ú °°Àº Ãֽйæ¹ýµµ ±âÁ¸ÀÇ ´ÜÀÏ ¼¼Æ÷ ºÐ¼® ÇÁ·Î¼¼½º¸¦ º¸¿ÏÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀÇ °¡Àå Å« °úÁ¦ Áß Çϳª´Â ½ÃÄö½Ì °á°úÀÇ µ¥ÀÌÅÍ ºÐ¼®Àε¥, ÀÌ´Â ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º °æÇèÀÌ ¾ø¾îµµ Á¶ÀÛÇÒ ¼ö Àִ Ŭ¶ó¿ìµå Ç÷§ÆûÀ» ÅëÇØ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®¹ý¿¡¼´Â ¾ÆÁ÷ ¹àÇôÁöÁö ¾ÊÀº ÁÖÁ¦¿¡ ´ëÇÑ Á¶»çÀÇ ¿©Áö°¡ ¸¹±â ¶§¹®¿¡ ÇâÈÄ 10³â µ¿¾È ÀÌ ¹æ¹ýÀÌ Å©°Ô ¼ºÀåÇÒ °ÍÀ̸ç, ¾Ï»Ó¸¸ ¾Æ´Ï¶ó ´Ù¸¥ ÁúȯÀÇ Áø´Ü °³¼±µµ ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â ÀÌ ºÐ¾ßÀÇ °úÁ¦, ÃËÁø¿äÀÎ, ½Å±â¼ú Ç÷§Æû, ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ¼ºÀå Àü¸ÁÀ» ¿¹ÃøÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌÇØ°ü°èÀÚ¿Í ½ÃÀå ÁøÀÔÀÚ°¡ Ȱ¿ëÇØ¾ß ÇÒ ÁÖ¸ñÇÒ ¸¸ÇÑ M&A, ÀÚ±Ý Á¶´Þ ¹× ÆÄÆ®³Ê½ÊÀ» ½Äº°Çϰí ÀÌÇØ°ü°èÀÚ »ýŰ迡 ´ëÇÑ °³¿ä¸¦ Á¦°øÇÕ´Ï´Ù.
Technological advancements in single-cell analysis propel new diagnostic and therapeutic opportunities.
Single-cell analysis can diagnose a condition in heterogenous cell population samples by studying genomics, transcriptomics, proteomics, metabolomics, and other cellular interactions in cells. It helps to understand a tumor microenvironment better and develop drugs based on newly uncovered knowledge of various types of tumors. The rich data provided through this method of analysis gives in-depth insight into gene expression and other factors determining a pathological condition.
As this method is an advancement to already existing methods of diagnosis and drug discovery, it is gaining the attention of investors and research institutions, although there are a few challenges in terms of technology (which must be navigated through advancements in technology platforms) and the monopoly of large sequencing companies that have grown to provide end-to-end solutions that cannot be provided by small and mid-sized companies, creating an intensely competitive environment.
Many companies perform single-cell analysis at the genomic and transcriptomic levels; however, only a few do the same in proteomic and multi-omics single-cell resolution. Technology advancements are helping to bypass tedious processes, such as single-cell separation through a unique barcoding process during library preparation. Modern methods, including spatial omics and live-cell sequencing, are also complementing the existing single-cell analysis process. One of the major challenges in this method is the data analysis of sequenced results, which is being tackled through cloud platforms that operate without the need for prior bioinformatics experience. There is significant scope for research on topics that are underexplored in this method of analysis, which ensures good growth of this technique in the next decade and promises improved diagnosis not only for cancer but also for other diseases.
This study identifies the challenges, drivers, new technology platforms, and growth opportunities in this space and foresees a growth outlook. It also provides an overview of the stakeholder ecosystem, identifying notable mergers and acquisitions, funding, and partnerships for stakeholders and market participants to leverage.