![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1513545
AI¸¦ Ȱ¿ëÇÑ Çõ½ÅÀûÀÎ ÀÓ»ó½ÃÇè ±â¾÷ : Àü·«Àû ÇÁ·ÎÆÄÀϸµ°ú ¼ºÀå ±âȸInnovative AI-enabled Clinical Trial Companies: Strategic Profiling and Growth Opportunities |
ÀÓ»ó½ÃÇè °ü¸®¿¡ Çö½Ç ¼¼°è ÀλçÀÌÆ®¸¦ ÅëÇÕÇÏ¿© ÀÓ»ó½ÃÇè¿¡¼ AI äÅÃÀ» ÃËÁø
Àü ¼¼°è ÀÓ»ó ÆÄÀÌÇÁ¶óÀο¡¼ º¹ÀâÇÑ ½Å±Ô Ä¡·áÁ¦°¡ ±ÞÁõÇÏ´Â °¡¿îµ¥, °èȹ ¹× ½ÇÇàÀ» À§ÇÑ ±â¼ú ±â¹Ý ¼Ö·ç¼ÇÀ» Ȱ¿ëÇÑ ÀûÀÀÇü ½ÃÇè ¼³°è¸¦ ÅëÇØ ½ÃÇè ¼³°è¸¦ °³¼±ÇÏ´Â °ÍÀÌ ÀϹÝȵǰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)Àº ºÐ»êÇü ÀÓ»ó½ÃÇè ¼³°è¸¦ Áö¿øÇϰí ȯÀÚ Áß½ÉÀÇ ÀÓ»ó½ÃÇè ¹æ½ÄÀ» °¡´ÉÇÏ°Ô ÇÑ´Ù´Â Á¡¿¡¼ Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÓ»ó½ÃÇèÀº ÀüÀÚÀǹ«±â·Ï(EMR) ÇüÅÂÀÇ ´ë±Ô¸ð Àå±â ȯÀÚ µ¥ÀÌÅͺ£À̽º¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. °·ÂÇÑ µ¥ÀÌÅͺ£À̽º¸¦ »ç¿ëÇÒ ¼ö ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ´ëºÎºÐÀÇ µ¥ÀÌÅͺ£À̽º´Â ¸íÈ®¼º°ú ±¸Á¶°¡ ¸íÈ®ÇÏÁö ¾Ê¾Æ Àб⠾î·Á¿î °æ¿ì°¡ ¸¹½À´Ï´Ù. ±× °á°ú, AI/¸Ó½Å·¯´×(ML) ¾Ë°í¸®Áò°ú Ç÷§ÆûÀÇ ±Þ¼ÓÇÑ º¸±ÞÀ¸·Î ºñÁ¤Çü µ¥ÀÌÅͺ£À̽º¸¦ ½±°Ô ±¸Á¶ÈÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, ÀüÀÚÀǹ«±â·Ï(EHR)Àº Àü ¼¼°è ÀÓ»ó½ÃÇè ȯ°æÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ¹æ´ëÇϰí dzºÎÇÏ¸ç °ü·Ã¼º ³ôÀº µ¥ÀÌÅÍ ¼Ò½º°¡ µÇ¾ú½À´Ï´Ù.
ÀÓ»ó½ÃÇè ¼³°è, ½Ã¼³ ¼±Á¤, ȯÀÚ ¹ß±¼ ¹× À¯Áö¿¡ ÅëÇÕµÈ AI ±â¹Ý ¼Ö·ç¼ÇÀ» µµÀÔÇÔÀ¸·Î½á CRO¿Í Á¦¾à»ç ½ÃÀå ÁøÃâ Àü·«ÀÌ ¿ëÀÌÇØÁö¸ç, AI´Â ÀÓ»ó½ÃÇè¿¡¼ ºñ¿ë Àý°¨, È¿À²¼º, ¿ø°Ý ȯÀÚ ¸ðÁý, °ü¸® ¹× Âü¿©¸¦ ÅëÇÑ ºÐ»êÇü ÀÓ»ó½ÃÇèÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇÏ´Â µ¥ Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ºÐ»êÇü ÀÓ»ó½ÃÇèÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇÏ´Â °ÍÀÌ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. À½¼º ÀνÄ, 꺿 ¹× ±âŸ ÀåÄ¡ ÇüÅÂÀÇ ´ëÈÇü Ç÷§ÆûÀº ȯÀÚÀÇ ¼øÀÀµµ¸¦ ³ôÀÌ°í ´õ ¸¹Àº ȯÀÚ¸¦ È®º¸ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. RCT´Â AIÀÇ Àû¿ëÀÌ È®´ëµÇ°í ÀÖ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ºÐ¾ß·Î, ÀÇ·ÚÀÚ´Â ÀÌ ±â¼úÀ» Ȱ¿ëÇÏ¿© »ý¼ºµÈ ¹æ´ëÇÑ ½Ã¼³ ¼öÁØÀÇ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© ½ÃÇè ¼³°è ¹× ¼öÇà¿¡ ´ëÇÑ °¡½Ã¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. °¡½Ã¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.
Icon plc, Novotech, Syneos Health, IQVIA¿Í °°Àº ´ëÇü CRO¿Í BMS, Amgen, AstraZeneca¿Í °°Àº ÀϺΠÁ¦¾à»çµéÀº AI ±â¹Ý Ç÷§ÆûÀ» µµÀÔÇÏ¿© ½Ã¼³ ¼±Á¤ ¹× ȯÀÚ ¸ðÁýÀ» Áö¿øÇϰí ÀÖÀ¸¸ç, Novartis µî ´Ù¸¥ ¸¹Àº ±â¾÷µéµµ ÀÓ»ó½ÃÇè¿¡ AI¸¦ Àû¿ëÇÏ¿© Àüü ÀÓ»ó½ÃÇèÀÇ Å¸ÀÓ¶óÀÎÀ» ´ÜÃàÇϱâ À§ÇØ ´Ù¾çÇÑ ´Ü°èÀÇ ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.
AI´Â RWD ¼öÁý ¹× ºÐ¼®, ÀÓ»ó 1»ó°ú ÀÓ»ó 2»óÀÇ ¿øÈ°ÇÑ °áÇÕ, »õ·Î¿î ȯÀÚ Á᫐ Æò°¡º¯¼ö °³¹ß µî ÀÓ»ó½ÃÇèÀ» Çõ½ÅÇÏ´Â ±Ùº»ÀûÀÎ Çõ½ÅÀ» °¡Á®¿À°í, AI´Â ´Ù¾çÇÑ ÀÔ·ÂÀ¸·ÎºÎÅÍ Ç¥ÁØÈµÇ°í ±¸Á¶ÈµÈ µðÁöÅÐ µ¥ÀÌÅÍ ¿ä¼Ò¸¦ »ý¼ºÇÏ´Â µ¥¿¡µµ Ȱ¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ÀÓ»ó½ÃÇè ¼³°è´Â ȯÀÚ Áß½ÉÀÇ ¼³°è¸¦ ÃÖÀûÈÇÏ°í °¡¼ÓÈÇÏ¿© ȯÀÚÀÇ ºÎ´ãÀ» Å©°Ô ÁÙÀ̰í, ¼º°ø °¡´É¼ºÀ» ³ôÀ̸ç, ¼öÁ¤ Ƚ¼ö¸¦ ÁÙÀ̰í, ÀÓ»ó½ÃÇèÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ´ëÇü ±â¼ú Á¦°ø¾÷ü¿Í Á¦¾à ½ºÅ¸Æ®¾÷ÀÇ Çù·ÂÀº ÇâÈÄ º¸´Ù È¿°úÀûÀÎ ÀÓ»ó½ÃÇèÀ» À§ÇÑ ±â¹ÝÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.
The Integration of Real-world Insights into Trial Management is Propelling AI Adoption in Clinical Trials
As global clinical pipelines witness a surge in complex novel therapies, there is a general inclination toward improving trial design through adaptive trial designs with technology-enabled solutions for planning and execution. Artificial intelligence (AI) is gaining large-scale recognition in terms of supporting decentralized trial designs and allowing patient-centric clinical trial modalities. Clinical trials rely on large-scale longitudinal patient databases in the form of electronic medical records (EMRs). Despite the availability of robust databases, most lack clarity and structure, making them difficult to read. As a result, the rapid adoption of AI/machine learning (ML) algorithms and platforms allows easy structuring of unstructured databases, and the use of electronic health records (EHRs) represents a vast, rich, and highly relevant data source that holds tremendous potential to improve the global clinical trial landscape.
Incorporating integrated AI-driven solutions in clinical trial design, site selection, and patient identification and retention will ease the go-to-market strategy for various CROs and pharmaceutical companies. AI is gaining significance in clinical trials to reduce cost, increase efficiency, and support the transition to decentralized trials through remote patient recruitment, management, and engagement. Interactive platforms in the form of voice recognition, chatbots, and other devices ensure better patient adherence and greater retention. These platforms are also highly beneficial in the selection of appropriate investigators and trial sites. Randomized control trials (RCTs) represent another important area seeing increased AI application, where sponsors can leverage the technology to analyze the vast site-level datasets generated for greater visibility into trial design and implementation.
Leading CROs, such as Icon plc, Novotech, Syneos Health, and IQVIA, as well as several pharmaceutical companies, including BMS, have successfully deployed AI-based platforms to support site selection and patient recruitment. BMS, Amgen, AstraZeneca, and Novartis, among several other companies, are also applying AI in clinical trials to enable the optimization of different stages, with the intent of reducing overall trial timelines.
AI brings innovation fundamental to transform clinical trials, such as collecting and analyzing RWD, seamlessly combining phase I and II of clinical trials, and developing novel patient-centric endpoints. AI can also be leveraged to create standardized, structured, and digital data elements from a range of inputs. As AI-enabled study design helps optimize and accelerate the creation of patient-centric designs, it significantly reduces patient burden, increases the likelihood of success, decreases the number of amendments, and improves the overall efficiency of trials. Together, large technology providers and pharmaceutical start-ups are setting the stage for more effective clinical trials in the future.