![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1532320
¼¼°èÀÇ Ç°Áú¿ë AI ¼ºÀå ±âȸ(2024-2028³â)Global Quality AI Growth Opportunities, 2024-2028 |
ǰÁú¿ë AI´Â ±â¾÷ÀÇ »ý»ê¼º, È¿À²¼º, ¸ÅÃâ ¼ºÀå, ºñ¿ë È¿°ú¸¦ º¸Áõ
ÀÌ Á¶»ç´Â ǰÁú°ü¸®¿¡¼ ÀΰøÁö´É(AI)ÀÇ È°¿ë È®´ë¿¡ ´ëÇØ »ìÆìº¸°í ÀÖÀ¸¸ç, AIÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ¿¹Ãø ǰÁú ºÐ¼®°ú ±â¾÷ ǰÁú°ü¸® ½Ã½ºÅÛ(EQMS)ÀÇ ¼ºÀå¿¡¼ º¼ ¼ö ÀÖµíÀÌ Ç°Áú°ü¸®¸¦ Áß½ÉÀ¸·Î ÇÑ ¸ðµç ºÐ¾ß¿¡¼ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. °æÀïÀÌ Ä¡¿ÇØÁü¿¡ µû¶ó »çÈÄÀû Á¢±ÙÀÌ ¾Æ´Ñ »çÀü ¿¹¹æÀÌ ÇʼöÀûÀ̸ç, AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ǰÁú°ü¸® ÅøÀº »ý»ê °øÁ¤ Ãʱ⿡ ǰÁú ¹®Á¦¸¦ ¹Ì¸® ÆÄ¾ÇÇÏ¿© ³¶ºñ¸¦ ÁÙÀ̰í Àüü Á¦Ç° ǰÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×(ML), ÀÚ¿¬¾î ó¸®(NLP), EQMS ¼Ö·ç¼ÇÀÇ °í±Þ ºÐ¼®°ú °°Àº µðÁöÅÐ ±â¼úÀº »ç¿ëÀÚÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí Á¤º¸¿¡ ÀÔ°¢ÇÑ ºñÁî´Ï½º ÀÇ»ç°áÁ¤, Çõ½Å ¹× »ý»ê¼º Çâ»óÀ» °¡Á®¿É´Ï´Ù. ÅõÀÚ¼öÀÍ·ü(ROI)ÀÌ ºÒºÐ¸íÇϰí ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ÀÎ½Ä ºÎÁ·ÀÌ ¹®Á¦Á¡À¸·Î ÁöÀûµÇ°í ÀÖÁö¸¸, °ø±Þ¾÷üµéÀº ÇöÀç ½Ç¿ëÀûÀÎ ÀÌ¿ë »ç·Ê Áõ°¡¸¦ °Á¶ÇÏ´Â ¹æ½ÄÀ¸·Î ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ǰÁú°ü¸®¿¡¼ AIÀÇ ÀáÀç·ÂÀº ±ú²ýÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù ¾øÀÌ´Â ½ÇÇöµÉ ¼ö ¾ø½À´Ï´Ù. µû¶ó¼ AI ÇÁ·ÎÁ§Æ®¸¦ ½ÃÀÛÇϱâ Àü¿¡ °·ÂÇÑ µ¥ÀÌÅÍ Àü·«À» ¼ö¸³ÇÏ´Â °ÍÀÌ ¼º°ø¿¡ ÇʼöÀûÀÔ´Ï´Ù.
ÀÌ Á¶»ç¿¡¼´Â ǰÁú°ü¸®¿¡¼ AI Ȱ¿ëÀ» ÃËÁøÇÏ´Â ¿äÀΰú ¾ïÁ¦ÇÏ´Â ¿äÀÎÀ» ºÐ¼®ÇÕ´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä »ç¿ëÀÚ »ç·Ê¸¦ ´Ù·ç°í ÀÌ ºÐ¾ß¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ±â¾÷ °³¿äÀ» ¼Ò°³ÇÕ´Ï´Ù. ±âÁسâÀº 2023³â, ¿¹Ãø ±â°£Àº 2024-2028³âÀÔ´Ï´Ù.
AI in Quality Guarantees Productivity, Efficiency, Top-line Growth, and Cost Benefits for Businesses
This study examines the increasing use of artificial intelligence (AI) in quality management. The rapid advancement of AI has led to its use across sectors, particularly quality management, as is evident in the growth of predictive quality analytics and enterprise quality management systems (EQMS). With increasing competitive intensity, it has become essential to proactively avoid quality issues instead of relying on reactive approaches. AI-driven predictive quality management tools can preempt quality issues early in the production process, ensuring waste reduction and enhancing overall product quality. Digital technologies such as machine learning (ML), natural language processing (NLP), and advanced analytics in EQMS solutions drive user adoption and result in informed business decisions, innovation, and heightened productivity. While the unclear return on investment (RoI) and a lack of awareness about these technologies present challenges, vendors are now responding by highlighting the increasing number of practical use cases. However, the full potential of AI in quality management cannot be unlocked without access to clean, reliable data. Therefore, formulating a strong data strategy before embarking on AI projects will be imperative to success.
This study analyzes the factors driving and restraining the use of AI in quality management. It also highlights key user cases and profiles the companies impacting this space. The base year is 2023, and the forecast period is from 2024 to 2028.