½ÃÀ庸°í¼­
»óǰÄÚµå
1532320

¼¼°èÀÇ Ç°Áú¿ë AI ¼ºÀå ±âȸ(2024-2028³â)

Global Quality AI Growth Opportunities, 2024-2028

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Frost & Sullivan | ÆäÀÌÁö Á¤º¸: ¿µ¹® 68 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ǰÁú¿ë AI´Â ±â¾÷ÀÇ »ý»ê¼º, È¿À²¼º, ¸ÅÃâ ¼ºÀå, ºñ¿ë È¿°ú¸¦ º¸Áõ

ÀÌ Á¶»ç´Â ǰÁú°ü¸®¿¡¼­ ÀΰøÁö´É(AI)ÀÇ È°¿ë È®´ë¿¡ ´ëÇØ »ìÆìº¸°í ÀÖÀ¸¸ç, AIÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ¿¹Ãø ǰÁú ºÐ¼®°ú ±â¾÷ ǰÁú°ü¸® ½Ã½ºÅÛ(EQMS)ÀÇ ¼ºÀå¿¡¼­ º¼ ¼ö ÀÖµíÀÌ Ç°Áú°ü¸®¸¦ Áß½ÉÀ¸·Î ÇÑ ¸ðµç ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. °æÀïÀÌ Ä¡¿­ÇØÁü¿¡ µû¶ó »çÈÄÀû Á¢±ÙÀÌ ¾Æ´Ñ »çÀü ¿¹¹æÀÌ ÇʼöÀûÀ̸ç, AI¸¦ Ȱ¿ëÇÑ ¿¹Ãø ǰÁú°ü¸® ÅøÀº »ý»ê °øÁ¤ Ãʱ⿡ ǰÁú ¹®Á¦¸¦ ¹Ì¸® ÆÄ¾ÇÇÏ¿© ³¶ºñ¸¦ ÁÙÀ̰í Àüü Á¦Ç° ǰÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×(ML), ÀÚ¿¬¾î ó¸®(NLP), EQMS ¼Ö·ç¼ÇÀÇ °í±Þ ºÐ¼®°ú °°Àº µðÁöÅÐ ±â¼úÀº »ç¿ëÀÚÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí Á¤º¸¿¡ ÀÔ°¢ÇÑ ºñÁî´Ï½º ÀÇ»ç°áÁ¤, Çõ½Å ¹× »ý»ê¼º Çâ»óÀ» °¡Á®¿É´Ï´Ù. ÅõÀÚ¼öÀÍ·ü(ROI)ÀÌ ºÒºÐ¸íÇϰí ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ÀÎ½Ä ºÎÁ·ÀÌ ¹®Á¦Á¡À¸·Î ÁöÀûµÇ°í ÀÖÁö¸¸, °ø±Þ¾÷üµéÀº ÇöÀç ½Ç¿ëÀûÀÎ ÀÌ¿ë »ç·Ê Áõ°¡¸¦ °­Á¶ÇÏ´Â ¹æ½ÄÀ¸·Î ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ǰÁú°ü¸®¿¡¼­ AIÀÇ ÀáÀç·ÂÀº ±ú²ýÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù ¾øÀÌ´Â ½ÇÇöµÉ ¼ö ¾ø½À´Ï´Ù. µû¶ó¼­ AI ÇÁ·ÎÁ§Æ®¸¦ ½ÃÀÛÇϱâ Àü¿¡ °­·ÂÇÑ µ¥ÀÌÅÍ Àü·«À» ¼ö¸³ÇÏ´Â °ÍÀÌ ¼º°ø¿¡ ÇʼöÀûÀÔ´Ï´Ù.

ÀÌ Á¶»ç¿¡¼­´Â ǰÁú°ü¸®¿¡¼­ AI Ȱ¿ëÀ» ÃËÁøÇÏ´Â ¿äÀΰú ¾ïÁ¦ÇÏ´Â ¿äÀÎÀ» ºÐ¼®ÇÕ´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä »ç¿ëÀÚ »ç·Ê¸¦ ´Ù·ç°í ÀÌ ºÐ¾ß¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ±â¾÷ °³¿äÀ» ¼Ò°³ÇÕ´Ï´Ù. ±âÁسâÀº 2023³â, ¿¹Ãø ±â°£Àº 2024-2028³âÀÔ´Ï´Ù.

¸ñÂ÷

Àü·«Àû Çʼö ¿ä°Ç

  • ¿Ö ¼ºÀåÀÌ ¾î·Á¿öÁö°í Àִ°¡?
  • The Strategic Imperative 8(TM)
  • ǰÁú¿ë AI¾÷°è¿¡ ´ëÇÑ ÁÖ¿ä Àü·«Àû Çʼö ¿ä°ÇÀÇ ¿µÇâ
  • Growth Pipeline Engine(TM)À» ÃËÁøÇÏ´Â ¼ºÀå ±âȸ

¿¡ÄڽýºÅÛ

  • ǰÁú¿ë AI - ¼­·Ð

¼ºÀå Á¦³Ê·¹ÀÌÅÍ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ǰÁú¿ë AI - º¯Ãµ
  • ǰÁú°ü¸® AIÇõ¸í

¼ºÀå ±âȸ - ¿¹Ãø ǰÁú¿ë AI

  • ¿¹Ãø ǰÁú¿ë ºñÁö´Ï½º »ç·Ê
  • ¿¹Ãø ǰÁú¿ë AI ºñÁö´Ï½º »ç·Ê
  • ¿¹Ãø ǰÁú¿ë AI(»ç·Ê ¿¬±¸)
  • ǰÁú°ü¸®¿ë AI ´ëÀÀ ½Ã½ºÅÛ°ú ¸Ó½Å ºñÀü
  • »ç·Ê ¿¬±¸

¼ºÀå ±âȸ - AI »ç¿ë »ç·Ê

  • AI »ç¿ë »ç·Ê¿Í Á¦Á¶ ¹ë·ùüÀÎ
  • Áß°ø¾÷ ǰÁú°ü¸®¿ë AI
  • ½ÃÀå ±âȸ

¼ºÀå ±âȸ - ÀÚÀ²Çü AI

  • ÀÚÀ²Çü AI ÀÇ»ç°áÁ¤

¼ºÀå ±âȸ - AI¿Í µ¥ÀÌÅÍ Àü·«ÀÇ ¿î¿µÈ­

  • AI ¿î¿µÈ­¿¡ ´ëÇÑ ·Îµå¸Ê
  • AI¿ë µ¥ÀÌÅÍ Àü·«
  • »ý¼ºÇü AI¿Í ¿¹Ãø AI

¼ºÀå ±âȸ - Áö¼Ó°¡´É¼º°ú ESG

  • Áö¼Ó°¡´É¼º°ú ESG

¼ºÀå ±âȸ - EQMS¿ë AI

  • EQMS¿ë AI
  • EQMS¿ë AIÀÇ ºñÁö´Ï½º »ç·Ê
  • EQMS¿ë AIÀÇ °úÁ¦
  • EQMS¿ë AIÀÇ ÀÌÁ¡
  • EQMS¿ë AI - ¿ëµµ
  • ǰÁú¡¤¾ÈÀü¿ë AI

ǰÁú¿ë AI - CTA

  • ±â¾÷
  • EQMS¿ë AI - ComplianceQuest
  • EQMS¿ë AI - IQVIA
  • EQMS¿ë AI - ETQ
  • EQMS¿ë AI - Honeywell(Sparta Systems)

¼ºÀå ±âȸ À¯´Ï¹ö½º

  • ¼ºÀå ±âȸ 1 : EV ºÎǰ Á¦Á¶ÀÇ ¿¹Ãø ǰÁú°ü¸®
  • ¼ºÀå ±âȸ 2 : Ç×°ø¡¤¿î¼Û ºÎ¹®ÀÇ Ç°Áú°ü¸® ¾ö°ÝÈ­
  • ÀÚ·á ¸®½ºÆ®
  • ¸éÃ¥»çÇ×
KSA 24.08.27

AI in Quality Guarantees Productivity, Efficiency, Top-line Growth, and Cost Benefits for Businesses

This study examines the increasing use of artificial intelligence (AI) in quality management. The rapid advancement of AI has led to its use across sectors, particularly quality management, as is evident in the growth of predictive quality analytics and enterprise quality management systems (EQMS). With increasing competitive intensity, it has become essential to proactively avoid quality issues instead of relying on reactive approaches. AI-driven predictive quality management tools can preempt quality issues early in the production process, ensuring waste reduction and enhancing overall product quality. Digital technologies such as machine learning (ML), natural language processing (NLP), and advanced analytics in EQMS solutions drive user adoption and result in informed business decisions, innovation, and heightened productivity. While the unclear return on investment (RoI) and a lack of awareness about these technologies present challenges, vendors are now responding by highlighting the increasing number of practical use cases. However, the full potential of AI in quality management cannot be unlocked without access to clean, reliable data. Therefore, formulating a strong data strategy before embarking on AI projects will be imperative to success.

This study analyzes the factors driving and restraining the use of AI in quality management. It also highlights key user cases and profiles the companies impacting this space. The base year is 2023, and the forecast period is from 2024 to 2028.

Table of Contents

Strategic Imperatives

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the Quality AI Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™

Ecosystem

  • AI in Quality-An Introduction

Growth Generator

  • Growth Drivers
  • Growth Restraints
  • AI in Quality-The Transition
  • AI Revolution in Quality Management

Growth Opportunities-AI in Predictive Quality

  • The Business Case for Predictive Quality
  • The Business Case for AI in Predictive Quality
  • AI in Predictive Quality (case study)
  • AI-enabled Systems and Machine Vision for Quality Control
  • Case Studies

Growth Opportunities-AI Use Cases

  • AI Use Cases and Manufacturing Value Chain
  • AI in Quality Control in Heavy Industries
  • Market Opportunity

Growth Opportunities-Autonomous AI

  • Autonomous AI Decisions

Growth Opportunities-Operationalizing AI and Data Strategy

  • Roadmap to Operationalize AI
  • Data Strategy in AI
  • Generative AI and Predictive AI

Growth Opportunities-Sustainability and ESG

  • Sustainability and ESG

Growth Opportunities-AI in EQMS

  • AI in EQMS
  • The Business Case for AI in EQMS
  • The Challenges for AI in EQMS
  • The Benefits of AI in EQMS
  • AI in EQMS-Application Areas
  • AI in Quality and Safety

AI in Quality-Companies to Action

  • Companies
  • AI in EQMS-ComplianceQuest
  • AI in EQMS-IQVIA
  • AI in EQMS-ETQ
  • AI in EQMS-Honeywell (Sparta Systems)

Growth Opportunity Universe

  • Growth Opportunity 1: Predictive Quality Management in EV Component Manufacturing
  • Growth Opportunity 2: Stricter Quality Control for the Aviation and Transportation Sectors
  • List of Exhibits
  • Legal Disclaimer
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦