Global Information
회사소개 | 문의 | 비교리스트

석유 및 가스 사업에서 폐기물의 유효 활용 기술

Technologies for Valorisation of Waste Streams from Oil & Gas Operations

리서치사 Frost & Sullivan
발행일 2019년 05월 상품 코드 851151
페이지 정보 영문 96 Pages
가격
US $ 4,950 ₩ 5,974,000 Web Access (Regional License) help
리서치사의 웹사이트에 로그인할 수 있는 패스워드가 발급되며, PDF를 다운로드 받는 형태로 제공됩니다. 동일 국가 내에 있는 사업장의 모든 분들이 이용할 수 있는 라이선스이며, 이용 인원수 제한은 없습니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.


석유 및 가스 사업에서 폐기물의 유효 활용 기술 Technologies for Valorisation of Waste Streams from Oil & Gas Operations
발행일 : 2019년 05월 페이지 정보 : 영문 96 Pages

본 상품은 영문 자료로 한글과 영문목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

석유 및 가스 사업에서 폐기물의 유효 활용 기술 동향을 조사했으며, 석유 및 가스 산업에서 배출되는 폐기물 개요, 발생원·폐기물 종류, 관련 정책·규제, 각 종류별 처리 기술·유효 활용 기술 동향, 신기술 개발 동향, 주요 사업자의 대처, 특허 동향 등을 정리했습니다.

제1장 주요 요약

제2장 서론

  • 석유 및 가스 산업에서 폐기물 관리 요구의 확대 동향
  • 서론 : 석유 및 가스 산업의 폐기물 스트림
  • EU의 관련 정책
  • EU의 규제 체계 등

제3장 석유 처리에서의 폐기물

  • 정유소의 탄화수소 폐기물 종류
  • 석유 슬러지의 조성
  • 정유소 저장 탱크 저부 슬러지의 특성
  • 오일 슬러지 처리의 중요성과 기술 상황
  • 용제 추출
  • 원심분리
  • EOR 계면활성제
  • 동결융해
  • 열분해
  • 마이크로파 조사
  • 계면동전
  • 초음파 조사
  • 포말부선
  • 하이브리드 오일 슬러지 처리 방법
  • 저장 탱크 저부의 슬러지 처리와 재활용법
  • 저품위 석유 코크스로의 열이탈
  • 50% 이상 오일 슬러지 재활용에 의한 코크스 제품의 품질 개선
  • 자원 회수·폐기의 개선을 위한 마이크로파 가열
  • 효소에 의한 슬러지 복원을 위한 산소 이용도의 확대
  • 오일 슬러지 처리를 위한 초음파 조사법
  • 겔 브레이커 및 용매 추출에 의한 슬러지 처리법
  • 기술 IP 보유 상황과 혁신 프로파일
  • 슬롭 오일 에멀전 고형분
  • 매스틱 아스팔트액에서 슬롭 오일 에멀전 고형분의 재이용
  • 유기산 유화제
  • 생물학적 복원(Bioremediation)
  • 특허 동향 등

제4장 비수반 가스로부터의 수은

  • 비수반 가스 처리로부터의 수은 제거
  • 재료 개질에 의한 흡착 효율 개선
  • 수은 제거용 고분자 흡착제를 이용한 새로운 방법
  • 액상 수은 제거 : 흡착제 폐기 문제를 배제
  • 출판 동향 : 정유 슬러지 처리와 수은 제거

제5장 시추 및 개수에서의 폐기물

  • 시추 및 개수 폐기물 스트림의 주요 구성요소
  • 시추액과 환경에 대한 영향
  • 시추 및 개수 폐기물의 유효 이용 방법
  • 시추 폐기물의 매립 : 토양 개선의 가능성
  • 지속가능한 토양 자원으로서의 시추 폐기물 이용에 초점을 맞춘 혁신
  • 퇴비화와 바이오리액터
  • 지렁이 퇴비에 의한 비료 생산
  • 열탈착 처리
  • 간접 로터리 킬른
  • 열상 분리
  • 컴팩트 및 휴대형 TPS 시스템
  • 열증류
  • 콘크리트 골재로서의 드릴 커팅
  • 콘크리트 골재로서의 TCC 미분말 부산물
  • 연료로서의 드릴 커팅
  • 드릴 커팅의 플라스틱으로의 변환
  • 주요 이해관계자에 의한 정책과 이니셔티브
  • 솔루션 제공 기업
  • 환경 규제
  • 특허 동향 등

제6장 발화성 황화철 폐기물

  • 발화성 황화철 : 정유소 화재의 주요 원인
  • 기존 발화성 황화철 처리 기술
  • 초산나트륨을 사용한 황화철의 산화에 의한 처리
  • 오존수를 사용한 처리
  • 화학 세정 및 제염
  • 기상법에 의한 제염

제7장 요약

제8장 연락처 정보

KSM 19.05.31

Stakeholders realize the importance of implementing new processes to reclaim and reuse oil from sludge and emulsion solids

Oil sludge is produced at various stages of the oil industry from exploration, production, transportation, processing, and storage. Majority of the sludge is produced at waste water treatment plants considering that large quantities of water are used at critical nodes of the refinery process including desalting, thermal cracking, distillation and catalytic cracking. It is estimated that for every volume of crude oil processed, up to 1.6 times of wastewater is produced and for every 500 tons of crude oil processed, 1 ton of oil sludge is produced. Therefore, sludge produced during refinery processes has gained a lot of attention from policy makers and regualtory bodies. Traditionally, mechanical, electrochemical and biological processes have been used for petroleum wastewater treatment. However, secondary waste generated is generated from these processes creating difficulties in managing disposal. Additionally, petroleum sludge is also generated from cleaning of oil storage tanks, equipment maintenance and oil-water separators. Therefore, there is a need to explore different alternative routes available for treatment and management of petroleum sludge waste from across the oil industry value chain. One another area of concern is the removal and valorization of mercury from non-associated gas streams. In most cases, mercury in natural gas occurs in elemental state. Due to its high vapor pressure, mercury is very mobile and can get dispersed throughout the gas plant's assets. This creates a major challenge for gas processors to make decision on how and where it can be removed.

This research service titled “Treatment and Valorization of waste streams in the Oil & Gas industry” details trends in the oil and gas industry which are creating a need for new and efficient methods for treatment of waste streams in the oil and gas industry. Classification of waste streams is discussed according to the source and composition. The main focus of this research is to identify the technology development trends in waste separation, treatment and valorization of four waste types classified based on source including,

  • Oil handling waste
  • Mercury waste from non-associated gas streams in gas plants
  • Drilling & work-over waste
  • Pyrophoric iron sulfide refinery and gas processing plants
  • Insights on activities of key stakeholders in the innovation ecosystem, maturity of emerging technologies and patent filing trends are discussed to provide an overview of the evolving technology landscape

Table of Contents

1.0. EXECUTIVE SUMMARY

  • 1.1. Research Scope
  • 1.2. Research Methodology
  • 1.3. Transforming Processes to Create Value From Oil and Gas Waste
  • 1.4. Transforming Processes to Create Value From Oil and Gas Waste
  • 1.5. Transforming Processes to Create Value From Oil and Gas Waste

2.0. INTRODUCTION

  • 2.1. Trends Driving Need for Waste Management in the Oil & Gas Industry
  • 2.2. Introduction to Waste Streams in the Oil & Gas Industry
  • 2.3. Relevant Policies that Impact E&P Activities in EU
  • 2.4. Regulatory Framework in EU for Wastes Generated from Refineries
  • 2.5. Drive to Realize Incremental Value Impeded by Complexities

3.0. OIL HANDLING WASTE

  • 3.1. Types of Hydrocarbon Waste in Petroleum Refinery
  • 3.2. Petroleum Sludge Composition
  • 3.3. Characterization of Refinery Storage Tank Bottom Sludge
  • 3.4. Importance of Oil Sludge Treatment and Technology Landscape
  • 3.5. Solvent Extraction: Solvent Induced Sludge Dissolution and Oil Recovery
  • 3.6. Centrifugation: Mechanical Method for Pre-treated Sludge
  • 3.7. Surfactant EOR: An Effective Method to Clean Solid Particles
  • 3.8. Freeze/Thaw: A Method Utilizing Volume Expansion of Water Droplet
  • 3.9. Pyrolysis: Thermal Treatment Offering Usable Hydrocarbon Products
  • 3.10. Microwave Irradiation: Improved Heating and Separation Efficiencies
  • 3.11. Electro-kinetic: Utilizing Low Intensity DC in a Sludge Tank Cell
  • 3.12. Ultrasonic Irradiation: Efficient Method for Cleaning Emulsion Solids
  • 3.13. Froth Floatation: Surface Chemistry-based Method Requiring Large Volumes of Water
  • 3.14. Hybrid Oil Sludge Treatment Approaches
  • 3.15. Hybrid Oil Sludge Treatment Approaches Also Include Combination of Technologies
  • 3.16. Storage Tank Bottom Sludge Treatment and Recycling Method
  • 3.17. Thermal Desorption of Oil Sludge to Low Grade Petroleum Coke
  • 3.18. Improving Coke Product Quality by Recycling >50% Oil Sludge
  • 3.19. Microwave Heating for Improve Resource Recovery and Disposal
  • 3.20. Increasing Oxygen Availability to Enable Enzyme Assisted Sludge Remediation
  • 3.21. Ultrasonic Irradiation Methods for Oil Sludge Treatment
  • 3.22. Sludge Treatment Methods Using Gel Breaker and Solvent Extraction
  • 3.23. Technology IP Ownership Status of Innovation Profiles
  • 3.24. Slop Oil Emulsion Solids
  • 3.25. Re-Using Slop Oil Emulsion Solids in Mastic Asphalt Suspensions
  • 3.26. Hg Removal Treatment and Valorization of Emulsion Solids
  • 3.27. Organic Acid Demulsifer Treatment for BS&W Reduction in Slop Oil
  • 3.28. Method to Remove Entrapped Heavy Crude from Solid Particles
  • 3.29. New Thermal Desorption Process for Reclaiming Oil from Solids
  • 3.30. Sludge Disposal Methods: Bioremediation
  • 3.31. Patent Filing Trends: Oil Sludge Treatment Methods
  • 3.32. Sludge Treatment Methods: Energy Consumption Based on Literature Survey

4.0. MERCURY FROM NON-ASSOCIATED GAS

  • 4.1. Mercury Removal from Non-associated Gas Processing
  • 4.2. Improving Adsorbent Efficiency Through Material Modification
  • 4.3. Novel Method Using Polymer Adsorbent for Mercury Removal
  • 4.4. Solution Phase Mercury Removal Eliminates Adsorbent Disposal Problems
  • 4.5. Publication Trends - Refinery Sludge Treatment and Mercury Removal

5.0. DRILLING AND WORKOVER WASTE

  • 5.1. Major Components of Drilling and Workover Waste Stream
  • 5.2. Drilling fluids and its environmental impact
  • 5.3. Drilling and Workover Waste Valorization Approaches
  • 5.4. Land Application of Drilling Waste has Potential to Improve Soil Characteristics
  • 5.5. Innovations Focused on the Use of Drilling Waste as Sustainable Soil Resources for Landscaping
  • 5.6. Composting and Bioreactors offer Effective Monitoring of Waste Properties during Treatment
  • 5.7. Co-composting Treatment of Hydrocarbon Impaired Drilling Wastes
  • 5.8. Successful Trials have been Performed to Produce Fertilizers from Drilling Waste using Vermiculture
  • 5.9. Thermal Desorption Processes enables Recovery of Drilling & Workover materials for Reuse in E&P as well as Other Applications
  • 5.10. Indirect Rotary Kilns can Recover Vaporized Hydrocarbons along with Drill Cuttings
  • 5.11. Thermal Phase Separation Process Allows for Effective Base Oil Recovery for Reuse
  • 5.12. Compact and Portable TPS systems for Drilling Waste Valorization
  • 5.13. Thermal Distillation of Drilling & Workover Waste Mitigates the Risks Associated with Thermal Degradation of Recovered Oil
  • 5.14. Thermal Distillation Consumes Lesser Footprint than other Thermal Desorption Technologies for Drilling & Workover Waste Valorization
  • 5.15. Utilizing Drill Cuttings for Road Spreading
  • 5.16. Use of Drill Cuttings as Aggregate in Concrete Mixtures
  • 5.17. Utilizing the Fine Powder By-product from Thermo-mechanical Cuttings Cleaner (TCC) as Fine Aggregate in Concrete Mixtures
  • 5.18. Utilization of Drill Cuttings as Fuel
  • 5.19. Conversion of Drill Cuttings into Plastic
  • 5.20. Drilling and Workover Waste Management Policies and Initiatives by Other Key Stakeholders in Oil & Gas
  • 5.21. Companies Offering Commercialized Integrated Drilling Waste Management Solutions
  • 5.22. Water-based Drilling Fluids are the Least Subjected to Regulations
  • 5.23. Environmental Legislations Regulating Offshore Fluids & Cuttings Discharges
  • 5.24. Patent Filing Trends: Drilling Waste Valorization

6.0. PYROPHORIC IRON SULFIDE WASTE

  • 6.1. Pyrophoric Iron Sulfides are a Major Cause of Explosions in Oil Refineries
  • 6.2. Conventional Technologies to Treat Pyrophoric Iron Sulfide
  • 6.3. Pyrophoric Iron Sulfides are a Major Cause of Explosions in Oil Refineries
  • 6.4. Treating Pyrophoric Waste by Oxidizing Iron Sulfide Using Sodium Nitrate
  • 6.5. Treating Pyrophoric Iron Sulfide Using Ozonated Water
  • 6.6. Chemical Cleaning and Decontamination of Pyrophoric Iron Sulfide
  • 6.7. Column and Tower Decontamination using Vapor-Phase process

7.0. SUMMARY

  • 7.1. Summary of Oil Sludge/Solids Treatment and Valorization Prospects
  • 7.2. Summary of Valorization Prospects

8.0. KEY CONTACTS

  • 8.1. Key Contacts
  • Legal Disclaimer
Back to Top
전화 문의
F A Q
 
ENDA banner