![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1511597
¿¡³ÊÁö ÀüȯÀ» Çü¼ºÇÏ´Â Áß¿ä Àç·áCritical Materials Shaping Energy Transition |
¼¼°èÀÇ ¿¡³ÊÁö Àüȯ¿¡ ¼ö¹ÝÇÏ¿© ž籤, dz·Â, ¿¡³ÊÁö ÀúÀå, Àü±âÀÚµ¿Â÷, Àúź¼Ò ¼ö¼Ò »ý»ê µîÀÇ ÁÖ¿ä ±â¼ú¿¡¼ ´ëÆøÀûÀÎ »ý»ê´É·Â Áõ°ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó ±¤¹üÀ§ÇÑ Áß¿ä Àç·áÀÇ ¼ö¿ä°¡ Áõ°¡Çϸç, ÀϺΠÀç·á¿¡¼´Â ¼ö¿ä ¼ºÀåÀÌ °ø±ÞÀ» ¿ôµ¹°Ô µË´Ï´Ù.
¿¡³ÊÁö Àüȯ ±â¼ú·Î ÀÎÇØ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ¿øÀÚÀç´Â ´ÙÀ½°ú °°½À´Ï´Ù. ÃÖ±Ù °ø±Þ°úÀ× ¿ì·Á¿¡µµ ºÒ±¸Çϰí, ¸®Æ¬Àº Àå±âÀûÀ¸·Î °¡Àå À§Çèµµ°¡ ³ôÀº Áß¿äÇÑ ¿øÀÚÀçÀÓ¿¡ Ʋ¸²¾øÀ¸¸ç, ¿¡³ÊÁö ¹Ðµµ Ư¼ºÀ¸·Î ÀÎÇØ ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)¿Í ¿¡³ÊÁö ÀúÀå¿¡ »ç¿ëµÇ´Â ¸Å¿ì Áß¿äÇÑ ¿øÀÚÀçÀÔ´Ï´Ù. ±¤»ê¾÷üµéÀÌ »ý»ê ´É·ÂÀ» ´Ã¸®¸é¼ ±¤»êÃø °ø±Þ ¸®½ºÅ©´Â ÁÙ¾îµé°í ÀÖÀ¸³ª ¸®Æ¬ Á¤Á¦´Â ¿©ÀüÈ÷ Áß±¹°ú °°Àº ƯÁ¤ ±¹°¡¿¡ Áö¿ªÀûÀ¸·Î ÁýÁߵǾî ÀÖÀ¸¸ç, ¹ë·ùüÀÎÀÇ °¡°ø ¿ä¼Ò¿¡ ´ÜÀÏ °ø±Þ¿ø ¸®½ºÅ©¸¦ ÃÊ·¡Çϰí ÀÖ½À´Ï´Ù.
ÇÑÆí, ÄÚ¹ßÆ®, ±¸¸®, ´ÏÄÌ, Èæ¿¬°ú °°Àº ´Ù¸¥ ¿øÀÚÀçµéÀº ¿¡³ÊÁö Àüȯ ±â¼ú¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´ÂÁö¿¡ ´ëÇØ Áß-÷´Ü ¸®½ºÅ©°¡ Áö¼ÓµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. dz·Â, ž籤, Àü·Â¸Á, ¿¡³ÊÁö ÀúÀå, Àü±âÀÚµ¿Â÷ µîÀÇ ±â¼ú¿¡´Â ´ë·®ÀÇ Àç·á°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ½Å±Ô ±¤»ê °³¹ßÀÌ ÁøÇàµÇ´Â µ¿¾È ±âÁ¸ °ø±Þ¿¡ ¾Ð¹ÚÀ» °¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹é±Ý°ú ½Ç¸®Äܰú °°Àº Àç·á´Â ¿¡³ÊÁö ÀüȯÀÇ À§ÇèÀÌ Áß°£¿¡¼ ³·Àº ¼öÁØÀÌÁö¸¸, Àå±âÀûÀ¸·Î µÎ Àç·á ¸ðµÎ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ̱⠶§¹®¿¡ °ø±ÞÀ» È®º¸Çϱâ À§ÇÑ ±¹Á¦ÀûÀÎ ³ë·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀüÇØÁú¸· ÀüÇØÁ¶°¡ ¼ö¼Ò »ý»ê¿¡ ±¤¹üÀ§ÇÏ°í ºü¸£°Ô äÅÃµÇ¸é ¹é±Ý °ø±ÞÀ» À§ÇùÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÑÆí, ½Ç¸®ÄÜÀº žçÀüÁöÀÇ Á߿伺¿¡µµ ºÒ±¸ÇÏ°í ¿©ÀüÈ÷ Áö¿ªÀûÀ¸·Î °¡Àå ÁýÁßµÈ °ø±Þ¸Á Áß ÇϳªÀÔ´Ï´Ù.
¿¡³ÊÁö ÀüȯÀ» Çü¼ºÇÏ´Â Áß¿ä Àç·á¿¡ ´ëÇØ Á¶»çºÐ¼®ÇßÀ¸¸ç, °¢ Àç·áÀÇ ¸®½ºÅ© Æò°¡, ¼ö±Þ ¿¹Ãø, ÇöÀç¿Í ÇâÈÄ ÇÁ·ÎÁ§Æ®ÀÇ »ó¼¼ Á¤º¸ µîÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.
The global energy transition will require a substantial build out of capacity across key technologies such as solar, wind, energy storage, electric vehicles and low-carbon hydrogen production. This will increase demand across a broad range of critical materials and for some this demand growth will outpace supply. In its critical minerals report, GlobalData identifies the most at-risk raw materials necessary for the energy transition, taking into account the importance of each material to different energy transition technologies, the volume of material required, and risk factors to each material's supply. Using this framework, the report discusses the supply risk of lithium, cobalt, copper, nickel, platinum, silicon, and graphite.
The raw materials discussed will experience significant demand increases from energy transition technologies. Despite recent oversupply concerns, lithium arguably remains the most at-risk critical raw material for the long term, with its energy density properties making it a pivotal raw material for battery electric vehicles (BEVs) and energy storage more widely. Although miners are increasing their production capacity, which will alleviate the mine side supply risk, lithium refining remains highly geographically concentrated in select countries such as China, creating single source risk in the processing element of the value chain.
Meanwhile, other raw materials such as cobalt, copper, nickel, and graphite, will continue to have a medium-high level of risk in terms of how they could impact energy transition technologies. Large quantities of each material will be required for technologies such as wind, solar, power grids, energy storage, and electric vehicles, which will put pressure on existing supplies while new mines continue to develop.
Materials such as platinum and silicon present a medium to low risk for the energy transition but still require international efforts to secure their supplies as both will face a strong increase in demand in the long term. A widespread and rapid adoption of PEM electrolyzers within hydrogen production will threaten platinum supplies while, despite its importance to solar, silicon still holds one of the most geographically concentrated supply chains.