시장보고서
상품코드
1689303

약물 표적 발굴을 위한 AI : Innovation Insights

Innovation Insights: AI for drug target identification

발행일: | 리서치사: GlobalData | 페이지 정보: 영문 38 Pages | 배송안내 : 즉시배송

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

인공지능(AI)은 방대한 데이터세트와 정교한 알고리즘을 활용하여 새로운 치료 표적을 발견함으로써 약물 표적 발굴에 혁명을 일으키고 있습니다. 기계학습 및 자연어 처리와 같은 AI 기술은 복잡한 생물학적 데이터를 분석하여 기존 방법보다 더 높은 정확도와 속도로 잠재적인 신약 표적을 식별할 수 있습니다. 이러한 기술은 단백질과 리간드의 상호작용을 예측하고, 유전자 및 후생유전학적 데이터를 분석하며, 질병과 관련된 바이오마커를 식별할 수 있습니다. 또한, AI 기반 접근법은 기존에 인식하지 못했던 표적의 상호작용을 파악하여 새로운 적응증에 대한 기존 약물의 재사용을 촉진할 수 있습니다. 신약 개발에 AI를 통합하면 실행 가능한 표적의 식별을 가속화하고, 비용을 절감하며, 의약품 개발 프로세스의 전반적인 효율성을 높일 수 있습니다. 그 결과, AI는 제약 산업에서 필수적인 도구가 되어 혁신을 촉진하고 신약 개발 프로그램의 성공률을 향상시키고 있습니다.

AI를 이용한 약물 표적 발굴은 2022년과 2023년에 특허 출원 건수가 크게 증가한 빠르게 성장하는 혁신 분야입니다. 이 혁신은 특히 남아시아 지역의 대학과 스타트업이 주도하고 있습니다. IBM, Google, Microsoft와 같은 주요 기술 기업들이 특허 출원을 주도하고 있으며, Roche와 Takeda는 특허 출원이 제한적인 유일한 대형 제약사입니다. 스타트업과 소규모 바이오테크 기업이 특허 점유율에 기여하는 사례도 증가하고 있습니다. 약물 표적 발굴을 위한 AI 투자 활동은 총 432건, 692억 달러에 달하며, 미국이 그 대부분을 차지합니다. 이 분야의 주요 기업 채용 활동은 주로 Amgen, Bristol-Myers Squibb, Johnson & Johnson과 같은 대형 제약사가 주도하고 있습니다.

이 보고서는 약물 표적 발굴을 위한 AI에 대해 조사하고, 의약품 파이프라인, 임상시험 정보, 규제 및 임상 관련 인사이트, 투자 중심 분석, 경쟁사 벤치마킹 등을 제공합니다.

목차

제1장 혁신 인사이트

제2장 경쟁 인사이트

  • 주요 혁신 리더 - 대형 제약회사
  • 주요 이노베이터 - 스타트업과 소규모 바이오테크놀러지 기업
  • 주요 혁신 - 대학 및 연구기관
  • 가장 많이 인용된 특허
  • AI 허브에서 얻은 인사이트
  • AI 기술 개요
  • 약물 표적 개요

제3장 시장 인사이트

  • 거래 동향
  • 주요 인수 기업
  • 거래 유형 분포
  • 지역적 분포
  • 채용 상위 기업
ksm 25.04.04

Artificial Intelligence (AI) is revolutionizing drug target identification by leveraging vast datasets and advanced algorithms to uncover novel therapeutic targets. AI techniques, such as machine learning and natural language processing, enable the analysis of complex biological data, identifying potential drug targets with higher accuracy and speed than traditional methods. These technologies can predict protein-ligand interactions, analyze genetic and epigenetic data, and identify biomarkers associated with diseases. AI-driven approaches also facilitate the repurposing of existing drugs for new indications by identifying previously unrecognized target interactions. The integration of AI in drug discovery accelerates the identification of viable targets, reduces costs, and enhances the overall efficiency of the drug development process. As a result, AI is becoming an indispensable tool in the pharmaceutical industry, driving innovation and improving the success rates of drug discovery programs.

The use of AI for drug target identification is a rapidly growing innovation, with a significant increase in patent filings in 2022 and 2023. This innovation is largely driven by universities and startups, particularly in South Asian regions. Major technology companies such as IBM, Google, and Microsoft are leading in patent filings, with Roche and Takeda Pharma being the only big pharma companies with limited patenting activity. Startups and small biotech companies are increasingly contributing to patent shares. Investment activity in AI for drug target identification has seen 432 deals totaling $69.2 billion, with the United States accounting for the majority of these deals. Hiring activity in this area is primarily led by big pharma companies like Amgen, Bristol-Myers Squibb, and Johnson & Johnson.

How is our 'State of Innovation intelligence 2024' report unique from other reports in the market?

Comprehensive & Granular Data - Unlike generic reports, ours provides in-depth patent analysis, drug pipelines, and clinical trial intelligence, enabling precise R&D and business strategies.

Regulatory & Clinical Insights - We track evolving regulatory frameworks and clinical advancements, helping you mitigate risks and accelerate market entry.

Investment-Focused Analysis - Our report includes detailed financial deal assessments and funding trends, identifying lucrative opportunities that many reports overlook.

Competitive Intelligence - We provide a deep dive into pharmaceutical leaders, biotech startups, and academia, helping you benchmark against competitors and uncover collaboration opportunities.

Actionable Decision-Making Support - Designed for strategic planning, our insights go beyond data presentation, offering practical guidance for investment, innovation, and market positioning.

We recommend this valuable source of information to anyone involved in -

Drug Development and Pharma/Biotech Companies - Value chain

Pharma/Drug Manufacturing Companies - Leaders and Startups

Business Development and Market Intelligence

Investment Analysts and Portfolio Managers

Professional Services - Investment Banks, PE/VC Firms

M&A/Investment, Management Consultants, and Consulting Firms

Key Highlights

  • AI for drug target identification is a fast-growing innovation area, with patent filings increasing in 2022 and 2023.
  • The innovation is largely driven by universities and startups, with South Asian geographies leading in patenting activity.
  • Technology companies, including IBM, Google, and Microsoft, are leading the innovation activity.
  • Roche and Takeda Pharma are the only two big pharma companies with limited patenting activity.
  • Technology startups and small biotech have taken the lead in applying AI for drug target identification.
  • There have been 432 deals in the AI for drug target identification sector, totaling $69.2 billion.

Scope

  • Innovation Insights: innovation examples by each use cases segment of various sectors to present key trends.
  • Key player: This represents a sample list of key players in each use case highlighted in the report.
  • Startups: This represents a sample list of emerging starups in each use case highlighted in the report.
  • University: This represents a sample list of leading universities in each use case highlighted in the report.

Reasons to Buy

  • Comprehensive Market Insights - Gain a deep understanding of how AI is transforming drug target identification, including its use in analyzing complex biological data and predicting protein-ligand interactions.
  • Stay Ahead of Cutting-Edge Innovations - Learn about the latest advancements in AI techniques, such as machine learning and natural language processing, that are revolutionizing drug discovery and uncovering novel therapeutic targets.
  • Competitive Landscape Analysis - Examine how leading pharmaceutical companies, biotech firms, and academic institutions are leveraging AI in drug discovery, offering valuable insights for competitive benchmarking.
  • Investment & Partnership Opportunities - Identify emerging trends in AI-driven drug development, including funding, licensing deals, and strategic collaborations, to support informed decisions in R&D and commercialization.
  • Enhance R&D Strategy - Leverage AI-driven insights into target identification, biomarker analysis, and drug repurposing to optimize your drug discovery pipeline and accelerate the development of new treatments.
  • Data-Driven Decision Making - Make strategic decisions backed by robust AI-based data, including intellectual property trends, clinical trial advancements, and AI adoption in drug development.

Table of Contents

Table of Contents

1. Innovation Insights

  • 1.1 Innovation radar
  • 1.2 Innovation s-curve
  • 1.3 Innovation deep dive
  • 1.4 Innovation deep dive - trending indications
  • 1.5 Top companies Based on portfolio strength and temporal indicators

2. Competitive Insights

  • 2.1 Key innovation leaders - big pharma
  • 2.2.Key innovators - startups and small biotech
  • 2.3 Key innovations - Universities and research institutions
  • 2.4 Most cited patents
  • 2.5 Insights from AI hub
  • 2.6 Overview of AI technologies
  • 2.7 Overview of drug targets

3.Market Insights

  • 3.1 Deals
  • 3.2. Key Acquirers
  • 3.3 Deal type distribution
  • 3.4 Geographical distribution
  • 3.5 Top Hiring Companies
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제