![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1400595
¿¹Ãø µ¶¼ºÇпë AI ½ÃÀå ±Ô¸ð : ±â¼úº°, µ¶¼º ¿£µåÆ÷ÀÎÆ®º°, ÄÄÆ÷³ÍÆ®º°, ÃÖÁ¾»ç¿ëÀÚº°, ¼¼°è ¿¹Ãø(2023-2032³â)AI in Predictive Toxicology Market Size-By Technology (Machine Learning, Natural Language Processing, Computer Vision), Toxicity Endpoints (Genotoxicity, Hepatotoxicity, Neurotoxicity, Cardiotoxicity), Component, End User & Global Forecast, 2023-2032 |
¿¹Ãø µ¶¼ºÇпë AI ½ÃÀå ±Ô¸ð´Â È¿À²ÀûÀÎ ÀǾàǰ °³¹ß ¹æ¹ý¿¡ ´ëÇÑ ¼¼°èÀÇ ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ Áö¿øµÇ¸ç, 2023-2032³â CAGR 29.5% ÀÌ»óÀ¸·Î È®´ëÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
AI´Â Á¦¾à¾÷°è°¡ ½Å¾à°³¹ß ¹× °³¹ß ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈÇϱâ À§ÇÑ Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½ÄÀ» °í·ÁÇÏ´Â Çõ½ÅÀûÀÎ Åø·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, AI ±â¹Ý ¿¹Ãø µ¶¼ºÇÐ ¸ðµ¨Àº ÀÇ»ç°áÁ¤À» °£¼ÒÈÇÏ°í ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½ÇÇèÀû ½ÃÇèÀÇ Çʿ伺À» ÁÙÀ̱â À§ÇØ ÀáÀçÀû µ¶¼ºÀ» Á¶±â¿¡ ½Äº°ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÇ»ç°áÁ¤À» °£¼ÒÈÇÏ°í ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½ÇÇèÀû ½ÃÇèÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ µ¿¹°½ÇÇèÀ» ÃÖ¼ÒÈÇØ¾ß ÇÑ´Ù´Â ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â°ú ÇÔ²² À±¸®Àû °í·Á»çÇ×ÀÌ Áõ°¡ÇÏ¸é¼ ÀϺΠ»ê¾÷°è°¡ ´ëü ¹æ¹ýÀ» äÅÃÇϵµ·Ï ¾Ð¹ÚÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Àεµ Á¤ºÎ´Â ¿¬±¸, ƯÈ÷ ÀǾàǰ ½ÃÇè¿¡¼ µ¿¹°À» »ç¿ëÇÏÁö ¾Ê±â À§ÇØ ½Å¾à ¹× ÀÓ»ó½ÃÇè ±ÔÁ¤ °³Á¤¾È(2023³â)À» ½ÂÀÎÇß½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ R&D Á¢±Ù ¹æ½ÄÀ» À§ÇØ ÀÜÀÎÇÏÁö ¾Ê°í ÀεµÀûÀÎ °üÇàÀ¸·Î ÀüȯÇÏ´Â °ÍÀº ¾÷°èÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¿¹Ãø µ¶¼ºÇÐ ºÐ¾ßÀÇ AI »ê¾÷Àº ÄÄÆ÷³ÍÆ®, ±â¼ú, µ¶¼º ¿£µåÆ÷ÀÎÆ®, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªÀ¸·Î ±¸ºÐµË´Ï´Ù.
ÄÄÆ÷³ÍÆ®¿¡ µû¶ó ¼ºñ½º ºÎ¹® ½ÃÀå Á¡À¯À²Àº 2022³â¿¡ »ó´çÇÑ ¸ÅÃâÀ» âÃâÇϰí 2032³â±îÁö »ó´çÇÑ ¼ºÀåÀ» ±â·ÏÇÒ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, AI ±â¹Ý ¼ºñ½º´Â Á¦¾à ¹× ÈÇÐ ºÎ¹®¿¡ ÀǾàǰ °³¹ß ¹× Á¦Ç° Å×½ºÆ® Áß ÀáÀçÀûÀÎ µ¶¼º ¹®Á¦¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®À» Á¦°øÇϱ⠶§¹®¿¡ ¿¹Ãø µ¶¼ºÇп¡ ÇʼöÀûÀÔ´Ï´Ù. ¿¹Ãø µ¶¼ºÇп¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¶ÇÇÑ Á¤È®Çϰí È¿À²ÀûÀÎ µ¶¼º ¿¹Ãø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÇ»ç°áÁ¤°ú ±ÔÁ¦ Áؼö¸¦ °ÈÇϱâ À§ÇÑ AI ±â¹Ý ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.
ÃÖÁ¾»ç¿ëÀÚº°·Î º¸¸é ÈÇÐ ¹× ÈÀåǰ ºÐ¾ßÀÇ ¿¹Ãø µ¶¼ºÇÐ AI ½ÃÀåÀº 2023-2032³â °ß°íÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÈÇÐ ¹× ÈÀåǰ ºÐ¾ßÀÇ ¾ÈÀü¼º Æò°¡ ¹× ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ ¿ì¼±¼øÀ§°¡ ³ô¾ÆÁü¿¡ µû¶ó AI ±â¹Ý ¿¹Ãø µ¶¼ºÇÐ ¼Ö·ç¼ÇÀº ÀáÀçÀû À§Çè°ú ¼ººÐÀÇ µ¶¼º¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®À» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù. ÈÇÐÁ¦Ç°°ú ÈÀåǰÀÇ Á¤È®ÇÑ µ¶¼º ¿¹Ãø¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ ºÐ¾ß´Â ´õ¿í È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
Áö¿ªº°·Î º¸¸é ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿¹Ãø µ¶¼ºÇÐ ºÐ¾ßÀÇ AI »ê¾÷Àº 2023-2032³â °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷ÀÇ È®Àå°ú Áö¿ª Àüü¿¡¼ AI ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ±ÔÁ¦±â°üÀÌ ¾ÈÀü¼º Æò°¡¿¡ ÁßÁ¡À» µÎ¸é¼ µ¶¼º Å×½ºÆ®¸¦ À§ÇÑ È¿À²ÀûÀ̰í Á¤È®ÇÑ ¿¹Ãø ¸ðµ¨À» Á¦°øÇϱâ À§ÇØ AI ¿ëµµÀÌ ±¤¹üÀ§ÇÏ°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾÷°è¿Í ¿¬±¸ ±â°ü °£ÀÇ Çù·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ Áö¿ªÀÇ »ê¾÷ È®ÀåÀÌ °¡¼Ó鵃 °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
AI in Predictive Toxicology Market size is projected to expand at over 29.5% CAGR from 2023-2032 propelled by the growing demand for efficient drug development methods worldwide. AI has emerged as a transformative tool considering the innovative approaches sought by the pharmaceutical sector to accelerate drug discovery and development processes. AI-powered predictive toxicology models enable the early identification of potential toxicities, for streamlining decision-making and reducing the need for time-consuming and costly experimental testing.
Furthermore, the rising ethical considerations along with regulatory pressures to minimize animal experimentation are compelling several industries to adopt alternative methods. For instance, the Government of India authorized an amendment to the New Drugs and Clinical Trial Rules (2023) to eliminate the use of animals in research, particularly drug testing. This shift towards cruelty-free and humane practices for sustainable R&D approaches will boost the industry growth.
The AI in predictive toxicology industry is segmented into component, technology, toxicity endpoint, end user, and region.
Based on component, the market share from the services segment generated substantial revenue in 2022 and is estimated to record considerable growth through 2032. AI-driven services are essential in predictive toxicology as they provide pharmaceutical and chemical sectors with valuable insights into potential toxicity issues during drug development and product testing. Additionally, the growing demand for accurate and efficient toxicology predictions is surging the need for AI-based services for enhanced decision-making and regulatory compliance.
In terms of end user, the AI in predictive toxicology market from the chemical & cosmetics segment is anticipated to depict robust growth from 2023 to 2032. This can be attributed to rising prioritization of the chemical and cosmetics sectors on safety assessments and regulatory compliance. AI-based predictive toxicology solutions offer valuable insights into potential risks and the toxicity of ingredients. The growing need for accurate toxicity predictions in chemical formulations and cosmetic products is also likely to fuel the segment expansion.
Regionally, the Asia Pacific AI in predictive toxicology industry is poised to exhibit a notable growth rate between 2023 and 2032. This is attributed to the expanding pharmaceutical and biotechnology industries coupled with the increasing investments in AI technologies across the region. With regulatory agencies emphasizing safety assessments, AI applications are widely deployed to offer efficient and accurate predictive models for toxicity testing. Moreover, the rising collaborative efforts between industry players and research institutions will also accelerate the regional industry expansion.