½ÃÀ庸°í¼­
»óǰÄÚµå
1518502

In-situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå ±Ô¸ð : Á¦Ç°º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, ¿¹Ãø(2024-2032³â)

In-situ Hybridization Market Size - By Product (Consumables, Instruments, Services), Technology (Fluorescent In-Situ Hybridization, Chromogenic In-Situ Hybridization), Application (Cancer, Cytogenetics, Immunology), End-use & Forecast 2024 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 160 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ In-situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå ±Ô¸ð´Â 2024-2032³â CAGR 8.6%·Î È®´ëÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº °³ÀÎ ¸ÂÃãÇü Ä¡·á Àü·«¿¡ ÇʼöÀûÀÎ Á¤¹ÐÇÑ À¯ÀüÀÚ ¹× ºÐÀÚ ÇÁ·ÎÆÄÀϸµÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇコÄɾ °³º° À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ¿¡ ±â¹ÝÇÑ ¸ÂÃãÇü Ä¡·á·Î ÀüȯµÊ¿¡ µû¶ó in-situ hybridization°ú °°Àº Á¤È®ÇÑ Áø´Ü Åø¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÇöÀç ÁøÇà ÁßÀÎ ¿¬±¸°³¹ßÀ» ÃËÁøÇÏ¿© in-situ hybridization assayÀÇ ¹Î°¨µµ¿Í ƯÀ̼ºÀ» Çâ»ó½Ã۰í Á¾¾çÇÐ, °¨¿°¼º Áúȯ ¹× À¯Àü¼º Áúȯ¿¡ ´ëÇÑ Àû¿ëÀ» È®´ëÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¿¹¸¦ µé¾î 2023³â 12¿ù Cytelabs´Â Cytecare Cancer Hospital°ú °øµ¿À¸·Î À¯¹æ¾Ï Àü¹® Á¾¾ç º´¸® Áø´Ü ¼­ºñ½ºÀÎ DISH °Ë»ç¸¦ ¹ßÇ¥Çß½À´Ï´Ù. À¯¹æ¾Ï ȯÀÚÀÇ HER2 »óŸ¦ ÆÇ´ÜÇÏ´Â µ¥ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ¾Ï Áø´Ü¿¡ Å« ÁøÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ´Â ¸ÂÃãÇü ÀÇ·á¿Í Á¤¹Ð Á¾¾çÇÐÀ» ÇâÇÑ Ãß¼¼¸¦ °­Á¶Çϰí À¯¹æ¾Ï ¹× ±âŸ Á¾¾çÇÐ Áúȯ¿¡ ´ëÇÑ Áø´Ü Á¤È®µµ¿Í Ä¡·á È¿°ú¸¦ Çâ»ó½ÃÄÑ ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

In-situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç »ê¾÷Àº Á¦Ç°, ±â¼ú, ¿ëµµ, ÃÖÁ¾ ¿ëµµ, Áö¿ªº°·Î ±¸ºÐÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿°»öü In-situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ºÐ¾ß´Â °£Æí¼º, ºñ¿ë È¿À²¼º, ¾Ï Áø´Ü ¹× ºÐÀÚ º´¸®Çп¡ ´ëÇÑ ±¤¹üÀ§ÇÑ Àû¿ë °¡´É¼ºÀ¸·Î ÀÎÇØ 2032³â±îÁö ÁÖ¸ñÇÒ ¸¸ÇÑ ¹ßÆÇÀ» ¸¶·ÃÇÒ °ÍÀÔ´Ï´Ù. À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» ³ôÀº ¹Î°¨µµ¿Í ƯÀ̼ºÀ¸·Î °¡½ÃÈ­ÇÒ ¼ö ÀÖ´Â ÀÌ ¹æ¹ýÀº ÀÓ»ó ¹× ¿¬±¸ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. Á¤È®ÇÑ Áúº´ Áø´Ü°ú ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Å©·Î¸ðÁ¦´Ð In-situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ¹æ¹ýÀº ¿ìÀ§¸¦ À¯ÁöÇÏ¸ç ¼¼°è ÇコÄÉ¾î ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¹ß»ý»ý¹°ÇÐ ºÐ¾ß´Â ¹è¾Æ ¹ß»ý°ú Á¶Á÷ ºÐÈ­¿¡¼­ À¯ÀüÀÚ ¹ßÇö ÆÐÅÏÀ» ¿¬±¸ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇϹǷΠ2032³â±îÁö »ó´çÇÑ È£È²À» ´©¸± °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ¼¼Æ÷¿Í Á¶Á÷ ³»¿¡¼­ mRNA¿Í DNA ¼­¿­ÀÇ Á¤È®ÇÑ ±¹¼ÒÈ­¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ¹ß»ý °úÁ¤°ú ±â°ü Çü¼º ¿¬±¸¸¦ Áö¿øÇÕ´Ï´Ù. ¹ß»ý»ý¹°ÇÐÀÇ °úÇÐÀû ¹ßÀüÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó º¹ÀâÇÑ »ý¹°ÇÐÀû ¸ÞÄ¿´ÏÁòÀ» ±Ô¸íÇϱâ À§ÇÑ in-situ hybridization ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ºÐÀÚ»ý¹°ÇÐ ¿¬±¸¿¡¼­ ÀÌ ºÐ¾ßÀÇ Áß¿äÇÑ À§Ä¡¸¦ È®°íÈ÷ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ In-situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå Á¡À¯À²Àº 2024-2032³â ¿¬Æò±Õ ¼ºÀå·ü(CAGR)ÀÌ µÎµå·¯Áú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÇ·áºñ ÁöÃâ Áõ°¡, ¸¸¼ºÁúȯ À¯º´·ü Áõ°¡, »ý¸í°øÇÐ ¿¬±¸ È®´ë¿¡ ÈûÀÔÀº °ÍÀ¸·Î ºÐ¼®µË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡´Â ¸Å¿ì Áß¿äÇϸç ÷´Ü Áø´Ü ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ ±¸»ó°ú ÀÇ·á ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚµµ ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇаü°è·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ºÐÀÚÁø´ÜÀÇ Çõ½Å°ú ±â¼ú Áøº¸¸¦ ÃËÁøÇÏ´Â in-situ hybridization »ê¾÷ÀÇ ÁÖ¿ä ±â¿© ±¹°¡·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå °³¿ä

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • ¿¡ÄڽýºÅÛ ºÐ¼®
  • ¾÷°è¿¡ ´ëÇÑ ¿µÇâ¿äÀÎ
    • ÃËÁø¿äÀÎ
      • ´ë»ó ÁúȯÀÇ À¯º´·ü Áõ°¡
      • ü¿ÜÁø´Ü ºÐ¾ßÀÇ ±â¼ú Áøº¸
      • ü¿ÜÁø´Ü¿¡¼­ ¿¬±¸°³¹ß ÅõÀÚÀÇ Áõ°¡
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ© & °úÁ¦
      • in-situ ÇÏÀ̺긮´ÙÀÌÁ¦À̼ÇÀÇ ³ôÀº ºñ¿ë
      • ¾Ö¸ÅÇÑ ±ÔÁ¦ ±¸Á¶ Á¸Àç
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • ±â¼úÀû Àü¸Á
  • ±ÔÁ¦ »óȲ
  • PorterÀÇ »ê¾÷ ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : Á¦Ç°º°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ¼Ò¸ðǰ
    • ÇÁ·Îºê
    • ŰƮ ¹× ½Ã¾à
    • ¾×¼¼¼­¸®
  • ±â±â
  • ¼­ºñ½º

Á¦6Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ±â¼úº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • FISH
    • DNA Çü±¤ in-situ ÇÏÀ̺긮´ÙÀÌÁ¦À̼Ç
    • RNA Çü±¤ in-situ ÇÏÀ̺긮´ÙÀÌÁ¦À̼Ç
    • PNA Çü±¤ in-situ ÇÏÀ̺긮´ÙÀÌÁ¦À̼Ç
  • CISH

Á¦7Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ¿ëµµº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ¾Ï
  • ¼¼Æ÷ À¯ÀüÇÐ
  • ¹ß»ý»ý¹°ÇÐ
  • °¨¿°Áõ
  • ½Å°æ°úÇÐ
  • ¸é¿ªÇÐ
  • ±âŸ ¿ëµµ

Á¦8Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÃÖÁ¾ ¿ëµµº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • º´¿ø ¹× Áø´Ü ¿¬±¸¼Ò
  • Çмú¡¤¿¬±¸±â°ü
  • ¼öŹ ¿¬±¸±â°ü
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦9Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : Áö¿ªº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ±â¾÷ °³¿ä

  • Agilent Technologies, Inc.
  • Bio-Techne Corporation
  • Bio-Rad Laboratories, Inc.
  • Bio View Ltd.
  • Danaher Corporation
  • Merck KGaA
  • Neogenomics, inc.
  • PerkinElmer, Inc.
  • Sysmex Corporation
  • Thermo Fisher Scientific Inc.
KSA 24.08.14

Global In-situ Hybridization Market size will expand at an 8.6% CAGR from 2024 to 2032, attributed to advancements in molecular biology coupled with increasing demand for personalized medicine. These innovations enable precise genetic and molecular profiling, which is crucial for personalized treatment strategies. As healthcare shifts towards tailored therapies based on individual genetic profiles, there is a growing need for accurate diagnostic tools like in-situ hybridization. This trend drives ongoing research and development, enhancing the sensitivity and specificity of in-situ hybridization assays and thus expanding their applications across oncology, infectious diseases, and genetic disorders.

For instance, in December 2023, Cytelabs introduced DISH testing for breast cancer, a specialized oncopathology diagnostic service launched in collaboration with Cytecare Cancer Hospital. It is increasingly used to determine HER2 status in breast cancer patients, marking a substantial advancement in cancer diagnostics. It highlights a trend towards personalized medicine and precision oncology, influencing market dynamics by enhancing diagnostic accuracy and treatment efficacy for breast cancer and possibly other oncological conditions.

The in-situ hybridization industry is divided based on product, technology, application, end-use, and region.

The chromogenic in-situ hybridization segment will establish a noteworthy foothold through 2032, owing to its simplicity, cost-effectiveness, and wide applicability in cancer diagnostics and molecular pathology. This method's ability to visualize gene expression patterns with high sensitivity and specificity makes it essential in clinical and research settings. As demand grows for precise disease diagnosis and personalized medicine, the chromogenic in-situ hybridization technique will maintain its dominance, catering to increasing healthcare needs globally.

The developmental biology segment will experience a considerable upturn by 2032, propelled by its critical role in studying gene expression patterns during embryonic development and tissue differentiation. This technique enables precise localization of mRNA and DNA sequences within cells and tissues, supporting research in developmental processes and organogenesis. As scientific advancements in developmental biology accelerate, the demand for in-situ hybridization techniques to elucidate complex biological mechanisms will grow, solidifying the segment's significant position in molecular biology research.

Asia Pacific in-situ hybridization market share will record a remarkable CAGR between 2024 and 2032, fueled by increasing healthcare expenditure, rising incidence of chronic diseases, and expanding biotechnology research. Countries like China, India, and Japan are pivotal, driving demand for advanced diagnostic techniques. Factors such as government initiatives and investments in healthcare infrastructure further bolster market growth in the region. These dynamics position Asia Pacific as a primary contributor to the in-situ hybridization industry, fostering innovation and technological advancements in molecular diagnostics.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates & calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360 degree synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Increasing prevalence of target disorders
      • 3.2.1.2 Technological advancement in the field of in-vitro diagnostics
      • 3.2.1.3 Rising R&D investments in in-vitro diagnostics
    • 3.2.2 Industry pitfalls & challenges
      • 3.2.2.1 High cost of in-situ hybridization
      • 3.2.2.2 Presence of an ambiguous regulatory framework
  • 3.3 Growth potential analysis
  • 3.4 Technological landscape
  • 3.5 Regulatory landscape
  • 3.6 Porter's analysis
  • 3.7 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategy outlook matrix

Chapter 5 Market Estimates and Forecast, By Product, 2021 - 2032 ($ Mn)

  • 5.1 Key trends
  • 5.2 Consumables
    • 5.2.1 Probes
    • 5.2.2 Kits and reagents
    • 5.2.3 Accessories
  • 5.3 Instruments
  • 5.4 Services

Chapter 6 Market Estimates and Forecast, By Technology, 2021 - 2032 ($ Mn)

  • 6.1 Key trends
  • 6.2 Fluorescent in-situ hybridization
    • 6.2.1 DNA fluorescent in-situ hybridization
    • 6.2.2 RNA fluorescent in-situ hybridization
    • 6.2.3 PNA fluorescent in-situ hybridization
  • 6.3 Chromogenic in-situ hybridization

Chapter 7 Market Estimates and Forecast, By Application, 2021 - 2032 ($ Mn)

  • 7.1 Key trends
  • 7.2 Cancer
  • 7.3 Cytogenetics
  • 7.4 Developmental biology
  • 7.5 Infectious diseases
  • 7.6 Neuro science
  • 7.7 Immunology
  • 7.8 Other applications

Chapter 8 Market Estimates and Forecast, By End-use, 2021 - 2032 ($ Mn)

  • 8.1 Key trends
  • 8.2 Hospitals and diagnostic laboratories
  • 8.3 Academic and research institutes
  • 8.4 Contract research organizations
  • 8.5 Pharmaceuticals and biotechnology companies
  • 8.6 Other end-users

Chapter 9 Market Estimates and Forecast, By Region, 2021 - 2032 ($ Mn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
    • 9.3.7 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE
    • 9.6.4 Rest of Middle East and Africa

Chapter 10 Company Profiles

  • 10.1 Agilent Technologies, Inc.
  • 10.2 Bio-Techne Corporation
  • 10.3 Bio-Rad Laboratories, Inc.
  • 10.4 Bio View Ltd.
  • 10.5 Danaher Corporation
  • 10.6 Merck KGaA
  • 10.7 Neogenomics, inc.
  • 10.8 PerkinElmer, Inc.
  • 10.9 Sysmex Corporation
  • 10.10 Thermo Fisher Scientific Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦