½ÃÀ庸°í¼­
»óǰÄÚµå
1528963

¼¼°èÀÇ BTH(Biogas to Hydrogen) ½ÃÀå ±Ô¸ð : Á¦Á¶ °øÁ¤º°, ¿ëµµº° - ¿¹Ãø(2024-2032³â)

Biogas to Hydrogen Market Size - By Production Process (Steam Methane Reforming, Autothermal Reforming, Partial Oxidation Reforming), By Application (Power Generation, Chemicals, Marine, Transport) & Forecast, 2024 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 115 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

BTH(Biogas to Hydrogen) ¼¼°è ½ÃÀåÀº ÁÖ¿ä ±â¾÷ °£ÀÇ Àü·«Àû Á¦ÈÞ¿¡ ÈûÀÔ¾î 2024³âºÎÅÍ 2032³â±îÁö 28%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº Àç»ý °¡´É ¿¡³ÊÁö¿Í °¡½º º¯È¯ ±â¼ú¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» Ȱ¿ëÇÏ¿© ¹ÙÀÌ¿À°¡½º °ø±Þ¿øÀ¸·ÎºÎÅÍÀÇ Áö¼Ó °¡´ÉÇÑ ¼ö¼Ò »ý»êÀ» ÃËÁøÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ¾ç»ç´Â ÀÚ¿ø°ú Çõ½ÅÀ» °áÇÕÇÏ¿© »ý»ê ´É·ÂÀ» È®ÀåÇÏ°í ¹ÙÀÌ¿À°¡½º¸¦ ¼ö¼Ò·Î ÀüȯÇÏ´Â È¿À²À» Çâ»ó½ÃŰ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â ±³Åë, »ê¾÷ µî ´Ù¾çÇÑ ºÐ¾ßÀÇ Å»Åº¼ÒÈ­¿¡ ÇʼöÀûÀΠûÁ¤ ¿¬·áÀÔ´Ï´Ù.

¿¹¸¦ µé¾î, 2024³â 4¿ù Àεµ¹ÙÀÌ¿À°¡½ºÇùȸ(IBA)´Â Àεµ¼ö¼ÒÇùȸ(HAI)¿Í Çù·ÂÇÏ¿© ¹ÙÀÌ¿À¿¡³ÊÁö ¼Ö·ç¼Ç, ƯÈ÷ ±×¸° ¼ö¼Ò¿Í û»ö ¼ö¼Ò¸¦ ÃËÁøÇÒ °ÍÀ̶ó°í IBAÀÇ °¡¿ì¶óºê ÄÉµð¾Æ È¸ÀåÀº PTI¿ÍÀÇ ÀÎÅͺ信¼­ ¸»Çß½À´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁö »ý»êÀ» ÃËÁøÇϱâ À§ÇÑ ¾çÇØ°¢¼­¸¦ ü°áÇß´Ù°í ¹àÇû½À´Ï´Ù.

ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº ¶ÇÇÑ »õ·Î¿î ±â¼ú ¹× °øÁ¤ ¿¬±¸¸¦ ÃËÁøÇÏ°í ºñ¿ëÀ» ³·Ã߸ç BTH(Biogas to Hydrogen) ¼Ö·ç¼ÇÀÇ ½ÇÇà °¡´É¼ºÀ» ³ôÀÔ´Ï´Ù. Àü ¼¼°è°¡ ź¼Ò ¹èÃâÀ» ÁÙÀ̱â À§ÇÑ ³ë·ÂÀ» °­È­ÇÏ´Â °¡¿îµ¥, BTH(Biogas to Hydrogen) Àüȯ ½ÃÀåÀº Áö¼Ó °¡´ÉÇÑ ¹Ì·¡¸¦ À§ÇØ º¸´Ù ģȯ°æÀûÀÎ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» °³¹ßÇÏ´Â µ¥ ÁÖ·ÂÇÏ´Â °­·ÂÇÑ ¾÷°è ÆÄÆ®³Ê½Ê¿¡ ÈûÀÔ¾î Å©°Ô È®´ëµÉ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

ÀÚ°¡¿­°³Áú ºÐ¾ß´Â 2032³â±îÁö ¾çÈ£ÇÑ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚ°¡ ¿­ °³Áú °øÁ¤Àº À¯±â¹°¿¡¼­ ÃßÃâÇÑ ¹ÙÀÌ¿À°¡½º¸¦ È¿À²ÀûÀ̰í Áö¼ÓÀûÀ¸·Î ¼ö¼Ò·Î ÀüȯÇÕ´Ï´Ù. ÀÚ°¡¿­ °³ÁúÀº ´ÜÀÏ ¹ÝÀÀ±â¿¡¼­ ¼öÁõ±â °³Áú°ú ºÎºÐ »êÈ­¸¦ °áÇÕÇÏ¿© ¿¡³ÊÁö ¼Òºñ¿Í ź¼Ò ¹èÃâÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¼ö¼Ò »ý»êÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. »ê¾÷°è¿Í Á¤ºÎ°¡ ûÁ¤ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ÀÚµ¿ ¿­ °³ÁúÀº ¿¬·áÀüÁö ¹× »ê¾÷ °øÁ¤°ú °°Àº ´Ù¾çÇÑ ¿ëµµÀÇ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº º¸´Ù ģȯ°æÀûÀÎ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇϰí È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù.

»ê¾÷°è¿Í À¯Æ¿¸®Æ¼°¡ ´õ ±ú²ýÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» ã°í Àֱ⠶§¹®¿¡ 2024³âºÎÅÍ 2032³â±îÁö ¹ßÀü ºÐ¾ß°¡ BTH(Biogas to Hydrogen) º¯È¯ ½ÃÀåÀÇ ¿ëµµ¸¦ Áö¹èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. À¯±â Æó±â¹°¿¡¼­ ÃßÃâÇÑ ¹ÙÀÌ¿À°¡½º´Â ¼öÁõ±â °³ÁúÀ̳ª Àü±âºÐÇØ¿Í °°Àº °øÁ¤À» ÅëÇØ ¼ö¼Ò·Î ÀüȯµË´Ï´Ù. ûÁ¤ ¿¬·áÀÎ ¼ö¼Ò´Â ¿¬·áÀüÁö¿¡¼­ ¼öÁõ±â ¿Ü¿¡´Â ¾Æ¹«°Íµµ ¹èÃâÇÏÁö ¾Ê°íµµ Àü±â¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº BTH(Biogas to Hydrogen) º¯È¯À» ºÐ»êÇü ¹ßÀüÀÇ ¸Å·ÂÀûÀÎ ´ë¾ÈÀ¸·Î ¸¸µé¾î ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̸鼭 ¾ÈÁ¤ÀûÀÎ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. Àü ¼¼°è ¿¡³ÊÁö ¼ö¿ä°¡ Áö¼Ó°¡´É¼ºÀ» ÇâÇØ ÁøÈ­ÇÏ´Â °¡¿îµ¥, BTH(Biogas to Hydrogen) ¹ßÀü ½ÃÀåÀº Àç»ý °¡´É ¿¡³ÊÁö ±â¼úÀÇ Çõ½ÅÀ» ÁÖµµÇÏ¸ç ¼ºÀåÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

À¯·´¿¡¼­´Â ¾ß½ÉÂù ±âÈÄ ¸ñÇ¥¿Í Àç»ý °¡´É ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» ¹è°æÀ¸·Î ¹ÙÀÌ¿À°¡½º¿¡¼­ ¼ö¼Ò·Î Àüȯ(BTH, Biogas to Hydrogen) ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯±â¼º Æó±â¹°·Î ¸¸µç ¹ÙÀÌ¿À°¡½º´Â ¼öÁõ±â °³ÁúÀ̳ª Àü±âºÐÇØ¿Í °°Àº ÷´Ü º¯È¯ ±â¼úÀ» ÅëÇØ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀÌ Àֱ⠶§¹®¿¡ ±× °¡Ä¡°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ ¼ö¼Ò´Â À¯·´ Àü¿ªÀÇ »ê¾÷, ¿î¼Û ¹× ³­¹æ ºÎ¹®ÀÇ Å»Åº¼ÒÈ­¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. À¯·´ ±¹°¡µéÀº Áö¿ø Á¤Ã¥, ÀÎÇÁ¶ó ÅõÀÚ, °øµ¿ ¿¬±¸ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ BTH(Biogas to Hydrogen) ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, À¯·´ ´ë·úÀÇ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¹Ì·¡¸¦ À°¼ºÇϰí ź¼ÒÁ߸³À» ´Þ¼ºÇÏ°í ¿¡³ÊÁö ¾Èº¸¸¦ °­È­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µðÀÚÀÎ
  • ±âº» ÃßÁ¤°ú °è»ê
  • ¿¹Ãø ¸ðµ¨
  • 1Â÷ Á¶»ç¿Í °ËÁõ
    • 1Â÷ Á¤º¸
    • µ¥ÀÌÅÍ ¸¶ÀÌ´× ¼Ò½º

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • ¾÷°è ¿¡ÄڽýºÅÛ
  • ±ÔÁ¦ »óȲ
  • ¾÷°è¿¡ ´ëÇÑ ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ©£¦°úÁ¦
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • Àü·«Àû Àü¸Á
  • Çõ½Å°ú Áö¼Ó°¡´É¼º Àü¸Á

Á¦5Àå ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : Á¦Á¶ °øÁ¤º°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Áõ±â ¸Þź °³Áú
  • ¿ÀÅä ¼­¸Ö °³Áú
  • ºÎºÐ »êÈ­ °³Áú
  • ±âŸ

Á¦6Àå ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : ¿ëµµº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ¹ßÀü
  • È­ÇÐ
  • ÇØ¾ç
  • ¿î¼Û
  • ±âŸ

Á¦7Àå ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø : Áö¿ªº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
  • À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç

Á¦8Àå ±â¾÷ °³¿ä

  • Air Products and Chemicals, Inc.
  • Alps Ecoscience
  • Fortescue
  • FuelCell Energy
  • Hazer Group Limited
  • H2B2
  • H2 Energy Group
  • Hyundai Motor Company
  • Kiwa
  • Kore
  • Linde Plc
  • Maire Tecnimont S.p.A.
  • RGH2
  • SYPOX GmbH
  • Technip Energies N.V.
LSH 24.08.20

Global Biogas to Hydrogen Market will witness a 28% CAGR between 2024 and 2032 fueled by strategic partnerships between leading companies. These collaborations leverage expertise in renewable energy and gas conversion technologies to advance sustainable hydrogen production from biogas sources. By combining resources and innovation, companies aim to scale production capabilities and improve efficiency in converting biogas into hydrogen, a clean fuel crucial for decarbonizing various sectors like transportation and industry.

For instance, in April 2024, the Indian Biogas Association (IBA) collaborated with the Hydrogen Association of India (HAI) to advance bio-based energy solutions, particularly focusing on green and blue hydrogen. In an interview with PTI, Gaurav Kedia, Chairman of IBA, stated that the two organizations have signed a memorandum of understanding (MoU) aimed at fostering the production of renewable energy within India.

These partnerships also facilitate research into new technologies and processes, driving down costs and enhancing the viability of biogas-to-hydrogen solutions. As global commitments to reduce carbon emissions intensify, the market for biogas to hydrogen is poised for significant expansion, supported by robust industry alliances focused on pioneering greener energy solutions for a sustainable future.

The overall Biogas to Hydrogen Industry size is classified based on the production process, application, and region.

The autothermal reforming segment will exhibit a decent growth rate through 2032. Autothermal reforming process converts biogas, derived from organic materials, into hydrogen efficiently and sustainably. Autothermal reforming combines steam reforming with partial oxidation in a single reactor, optimizing hydrogen production while minimizing energy consumption and carbon emissions. As industries and governments prioritize clean energy solutions, autothermal reforming offers a scalable method to produce hydrogen for various applications, including fuel cells and industrial processes. The market's growth is driven by its potential to support a transition towards greener energy sources and reduce dependence on fossil fuels.

The power generation segment could dominate the application landscape of the Biogas to Hydrogen market over 2024-2032 as industries and utilities seek cleaner energy solutions. Biogas, derived from organic waste, is converted into hydrogen through processes like steam reforming or electrolysis. Hydrogen, a clean fuel, can then be used in fuel cells to generate electricity with zero emissions other than water vapor. This capability makes biogas-to-hydrogen an attractive option for decentralized power generation, providing reliable electricity while reducing environmental impact. As global energy demands evolve towards sustainability, the market for biogas to hydrogen for power generation is poised for growth, driving innovation in renewable energy technologies.

In Europe, there is a growing demand for biogas to hydrogen solutions driven by ambitious climate targets and a shift towards renewable energy. Biogas, sourced from organic waste, is increasingly valued for its potential to produce hydrogen through advanced conversion technologies like steam reforming and electrolysis. This hydrogen is pivotal in decarbonizing industries, transportation, and heating sectors across Europe. With supportive policies, investments in infrastructure, and collaborative research initiatives, European countries are accelerating the adoption of biogas to hydrogen, aiming to achieve carbon neutrality and enhance energy security while fostering a sustainable energy future for the continent.

Table of Contents

Chapter 1 Research Methodology

  • 1.1 Research design
  • 1.2 Base estimates & calculations
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources

Chapter 2 Executive summary

  • 2.1 Industry 360° synopsis, 2019 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Porter's analysis
    • 3.5.1 Bargaining power of suppliers
    • 3.5.2 Bargaining power of buyers
    • 3.5.3 Threat of new entrants
    • 3.5.4 Threat of substitutes
  • 3.6 PESTEL analysis

Chapter 4 Competitive landscape, 2023

  • 4.1 Introduction
  • 4.2 Strategic outlook
  • 4.3 Innovation & sustainability landscape

Chapter 5 Market Size and Forecast, By Production Process, 2021 - 2032 (MT & USD Million)

  • 5.1 Key trends
  • 5.2 Steam methane reforming
  • 5.3 Autothermal reforming
  • 5.4 Partial oxidation reforming
  • 5.5 Others

Chapter 6 Market Size and Forecast, By Application, 2021 - 2032 (MT & USD Million)

  • 6.1 Key trends
  • 6.2 Power generation
  • 6.3 Chemicals
  • 6.4 Marine
  • 6.5 Transport
  • 6.6 Others

Chapter 7 Market Size and Forecast, By Region, 2021 - 2032 (MT & USD Million)

  • 7.1 Key trends
  • 7.2 North America
  • 7.3 Europe
  • 7.4 Asia Pacific

Chapter 8 Company Profiles

  • 8.1 Air Products and Chemicals, Inc.
  • 8.2 Alps Ecoscience
  • 8.3 Fortescue
  • 8.4 FuelCell Energy
  • 8.5 Hazer Group Limited
  • 8.6 H2B2
  • 8.7 H2 Energy Group
  • 8.8 Hyundai Motor Company
  • 8.9 Kiwa
  • 8.10 Kore
  • 8.11 Linde Plc
  • 8.12 Maire Tecnimont S.p.A.
  • 8.13 RGH2
  • 8.14 SYPOX GmbH
  • 8.15 Technip Energies N.V.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦