½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1535787

¿øÀÚ·Â ·Îº¿ ½ÃÀå : À¯Çüº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, ¿¹Ãø(2024-2032³â)

Nuclear Robots Market - By Type (Remote Manipulators, Crawlers, Aerial Drones, Underwater Robots (ROVs), Humanoid Robots), By End-use Industry & Forecast, 2024 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 220 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¿øÀÚ·Â ·Îº¿ ½ÃÀåÀº ¿¬±¸°³¹ßÀÌ Å©°Ô ÁøÀüµÇ¸é¼­ 2024³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ 10% ÀÌ»óÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

¿øÀڷ¹ßÀü¼Ò¿Í ½Ã¼³ÀÌ ¾ÈÀü, È¿À²¼º, ÀÚµ¿È­¿¡ Á¡Á¡ ´õ ÁßÁ¡À» µÎ¸é¼­ ¿øÀÚ·Â ·Îº¿Àº ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ·Îº¿Àº °í¹æ»ç¼± ȯ°æ¿¡¼­ °Ë»ç, À¯Áöº¸¼ö, Æó·Î µî À§ÇèÇÑ ÀÛ¾÷À» ¼öÇàÇÏ¿© Àΰ£ÀÌ À§ÇèÇÑ »óȲ¿¡ ³ëÃâµÇ´Â °ÍÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, 2024³â 3¿ù ¹Ì±¹ ¿¡³ÊÁöºÎ ¾Æ¸£°ï ±¹¸³¿¬±¸¼ÒÀÇ ¿¬±¸¿øµéÀº ¿øÀÚ·Â ½Ã¼³ÀÇ À¯ÇØ Æó±â¹° Á¤È­¸¦ °­È­Çϱâ À§ÇÑ ¿ø°Ý Á¦¾î ÅÚ·¹·Îº¸Æ½½º ½Ã½ºÅÛÀ» ¼±º¸¿´½À´Ï´Ù.

ÃÖ±ÙÀÇ ¿¬±¸ °³¹ß µ¿ÇâÀº ´õ ³ôÀº Á¤¹Ðµµ¿Í ½Å·Ú¼ºÀ¸·Î º¹ÀâÇÑ ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖ´Â º¸´Ù ´Ù¾çÇÏ°í Á¤±³ÇÑ ·Îº¿ÀÇ °³¹ß·Î À̾îÁö°í ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ±â¼ú¿¡´Â À̵¿¼º Çâ»ó, ¹æ»ç¼± Â÷Æó °³¼±, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁýÀ» À§ÇÑ Ã·´Ü ¼¾¼­ µîÀÌ Æ÷ÇԵ˴ϴÙ. ¿øÀÚ·Â ¿¡³ÊÁö°¡ ¼¼°è ¿¡³ÊÁö ¹Í½º¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ½Ã¼³ÀÌ ³ëÈÄÈ­µÊ¿¡ µû¶ó ¿­¾ÇÇÑ È¯°æ¿¡¼­µµ ¾ÈÀüÇÏ°í È¿°úÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ·Îº¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ±× °á°ú, Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ¿øÀÚ·Â ·Îº¿ ½ÃÀåÀÇ °­·ÂÇÑ ¼ºÀåÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.

À¯Çüº°·Î º¸¸é Å©·Ñ·¯ ºÐ¾ßÀÇ ¿øÀÚ·Â ·Îº¿ ½ÃÀå ¼öÀÍÀº 2024³âºÎÅÍ 2032³â±îÁö µÎµå·¯Áø CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Å©·Ñ·¯ ·Îº¿Àº ¿øÀÚ·Â ½Ã¼³ÀÇ º¹ÀâÇÏ°í À§ÇèÇÑ ÁöÇüÀ» À̵¿ÇÏ¿© °Ë»ç, À¯Áöº¸¼ö, ÀÜÇØ Á¦°Å µîÀÇ ÀÛ¾÷À» ¼öÇàÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. °ß°íÇÑ ¼³°è·Î °í¹æ»ç¼± ±¸¿ª¿¡¼­ ÀÛ¾÷ÇÒ ¼ö ÀÖÀ¸¸ç, »ç¶÷ÀÌ À§ÇèÇÑ »óȲ¿¡ ³ëÃâµÇ´Â °ÍÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ ¹ßÀüÀ¸·Î ±âµ¿¼º, ³»±¸¼º, ¼¾¼­ ±â´ÉÀÌ Çâ»óµÇ¾î ¿­¾ÇÇÑ È¯°æ¿¡¼­ÀÇ È¿À²¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ¿øÀÚ·Â ¹°ÁúÀÇ ¾ÈÀüÇÏ°í È¿À²ÀûÀÎ Ãë±Þ ¹× ÇöÀå À¯Áöº¸¼öÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Å©·Ñ·¯ ·Îº¿ÀÇ Á߿伺ÀÌ Ä¿Áö¸é¼­ ¿øÀÚ·Â ·Îº¿ ½ÃÀåÀÇ Å« ¼ºÀåÀ» ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµº°·Î´Â ¹æ»ç¼± Á¤È­ ºÐ¾ß°¡ 2024³âºÎÅÍ 2032³â±îÁö µÎµå·¯Áø ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ·Îº¿Àº ¹æ»ç¼º ¹°ÁúÀÇ ¿µÇâÀ» ¹Þ´Â ȯ°æÀ» °ü¸®ÇÏ°í ¿À¿°À» Á¦°ÅÇÏ¿© Àΰ£ÀÌ À§ÇèÇÑ »óȲ¿¡ ³ëÃâµÇ´Â °ÍÀ» Å©°Ô ÁÙÀÌ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¹æ»ç¼± Á¤È­¿ëÀ¸·Î ¼³°èµÈ ÷´Ü ·Îº¿Àº ¹æ»ç´É ÀÜÇع°À» ¾ÈÀüÇÏ°Ô Ãë±ÞÇÏ°í Á¦°ÅÇϸç, ÇöÀå °Ë»ç¸¦ ¼öÇàÇÏ°í, Á¤¹ÐÇÑ Á¦¿° ÀÛ¾÷À» ¼öÇàÇϱâ À§ÇÑ Æ¯¼ö ¼¾¼­¿Í µµ±¸¸¦ °®Ãß°í ÀÖ½À´Ï´Ù. ¿øÀÚ·Â ½Ã¼³ÀÌ ³ëÈÄÈ­µÇ°í È¿°úÀûÀÎ Æó·Î ¹× Æó±â¹° °ü¸®ÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹æ»ç¼± û¼Ò ·Îº¿ÀÇ ¿ªÇÒÀº Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ»ç¼º ¹°ÁúÀÇ ¾ÈÀü°ú È¿À²ÀûÀÎ Ãë±ÞÀÇ Çʿ伺Àº ¿øÀÚ·Â ·Îº¿ ½ÃÀåÀÇ Å« ¼ºÀåÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.

À¯·´ÀÇ ¿øÀÚ·Â ·Îº¿ ½ÃÀåÀº 2024³âºÎÅÍ 2032³â±îÁö µÎµå·¯Áø CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´ ±¹°¡µéÀº ³ëÈÄÈ­µÈ ¿øÀÚ·Â ½Ã¼³ÀÇ °ü¸®, Æó·Î °úÁ¤ ¹× ¹æ»ç¼º Æó±â¹° 󸮸¦ °­È­Çϱâ À§ÇØ ·Îº¿ ±â¼ú¿¡ ÅõÀÚÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ·Îº¿Àº À§ÇèÇÑ ÀÛ¾÷ ¼öÇà, ¹æ»ç¼± ÇÇÆø °¨¼Ò, ÀÛ¾÷ È¿À²¼º Çâ»ó¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. À¯·´ÀÌ ³ôÀº ¾ÈÀü ±âÁØÀ» À¯ÁöÇÏ°í Áö¼Ó°¡´ÉÇÑ ¿øÀÚ·Â ¼Ö·ç¼ÇÀ» ã±â À§ÇØ ³ë·ÂÇϸ鼭 ÷´Ü ¿øÀÚ·Â ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ½ÃÀå È®´ë¿Í ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ´Â À¯·´ Àü¿ªÀÇ Áß¿äÇÑ ¿¬±¸ °³¹ß ³ë·Â¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
  • º¥´õ ¸ÅÆ®¸¯½º
  • ÀÌÀÍ·ü ºÐ¼®
  • Å×Å©³î·¯Áö¿Í Çõ½Å Àü¸Á
  • ƯÇ㠺м®
  • ÁÖ¿ä ´º½º¿Í ´ëó
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¿øÀÚ·Â ¼ö¿ä Áõ°¡
      • ¾ÈÀü¼º°ú º¸¾È¿¡ ´ëÇÑ ¿ì·Á °íÁ¶
      • ¿øÀÚ·Â ÆóÁö Á¶Ä¡ ¼ö¿ä Áõ°¡
      • ¿øÀÚ·Â ¼¼°èÀû È®´ë
      • Áö¼ÓÀûÀÎ ±â¼ú Áøº¸
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ©¿Í °úÁ¦
      • º¹À⼺°ú ÅëÇÕ
      • »çÀ̹ö º¸¾È Ãë¾à¼º
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porters ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï »óȲ

  • ¼Ò°³
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ¿øÀÚ·Â ·Îº¿ ½ÃÀå ÃßÁ¤°ú ¿¹Ãø : À¯Çüº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ : À¯Çüº°
  • ¿ø°Ý ¸Å´Ïǽ·¹ÀÌÅÍ
  • Å©·Ñ·¯
  • °øÁß µå·Ð
  • ¼öÁß ·Îº¿(ROV)
  • ÈÞ¸Ó³ëÀÌµå ·Îº¿

Á¦6Àå ¿øÀÚ·Â ·Îº¿ ½ÃÀå ÃßÁ¤°ú ¿¹Ãø : ÃÖÁ¾ ¿ëµµº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ : ¿ëµµº°
  • ¹æ»ç¼º Æó±â¹° ó¸®
  • ¿øÀÚ·Â ÆóÁö Á¶Ä¡
  • ¹æ»ç¼± Á¤È­
  • ¿øÀڷ¹ßÀü¼Ò
  • Á¶»ç¡¤Å½»ç
  • ±âŸ

Á¦7Àå ½ÃÀå ÃßÁ¤°ú ¿¹Ãø : Áö¿ªº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • UAE
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦8Àå ±â¾÷ °³¿ä

  • AB Precision(Poole) Ltd
  • Areva
  • Boston Dynamics
  • Brokk Global
  • Clearpath Robotics
  • Diakont
  • Hitachi, Ltd.
  • James Fisher Technologies
  • KUKA AG
  • Mitsubishi Heavy Industries
  • QinetiQ
  • Reach robotics
  • Robotnik
  • SuperDroid Robots
  • Walischmiller Engineering GmbH
  • Westinghouse Electric Company
ksm 24.08.28

Global Nuclear Robots Market will witness over 10% CAGR between 2024 and 2032, driven by significant advancements in research and development. As nuclear power plants and facilities increasingly focus on safety, efficiency, and automation, nuclear robots are becoming essential tools. These robots perform hazardous tasks such as inspection, maintenance, and decommissioning in high-radiation environments, minimizing human exposure to dangerous conditions. For instance, in March 2024, researchers at the U.S. Department of Energy's Argonne National Laboratory showcased a remote-operated telerobotics system aimed at enhancing hazardous waste cleanup at nuclear sites.

Recent R&D efforts have led to the development of more versatile and sophisticated robots capable of handling complex tasks with greater precision and reliability. Innovations include enhanced mobility, improved radiation shielding, and advanced sensors for real-time data collection. As nuclear energy plays a crucial role in the global energy mix and as facilities age, the need for robotic systems that can operate safely and effectively in challenging environments grows. Consequently, ongoing advancements in technology and a focus on safety are driving robust growth in the nuclear robots market.

The overall Nuclear Robots Industry is classified based on the type, end-use, and region.

Based on type, the nuclear robots market revenue from the crawlers segment will register a commendable CAGR from 2024 to 2032. These crawler robots are engineered to navigate complex and hazardous terrains within nuclear facilities, performing tasks such as inspection, maintenance, and debris removal. Their robust design allows them to operate in high-radiation zones while minimizing human exposure to dangerous conditions. Recent advancements have improved their maneuverability, durability, and sensor capabilities, enhancing their effectiveness in challenging environments. As the need for safe and efficient handling of nuclear materials and site maintenance grows, crawler-type robots are becoming increasingly vital, driving substantial growth in the nuclear robots market.

In terms of end-use, the radiation cleanup segment will witness an appreciable growth from 2024 to 2032. These robots are crucial for managing and decontaminating environments affected by radioactive materials, significantly reducing human exposure to hazardous conditions. Advanced robots designed for radiation cleanup are equipped with specialized sensors and tools to safely handle and remove radioactive debris, perform site inspections, and conduct precise decontamination tasks. As nuclear facilities age and the need for effective decommissioning and waste management grows, the role of radiation cleanup robots becomes increasingly important. This need for safety and efficiency in handling radioactive materials is driving significant growth in the nuclear robots market.

Europe nuclear robots market will exhibit a notable CAGR from 2024 to 2032. European countries are investing in robotic technology to enhance the management of aging nuclear facilities, decommissioning processes, and radioactive waste handling. These robots play a critical role in performing hazardous tasks, reducing human exposure to radiation, and improving operational efficiency. With Europe's commitment to maintaining high safety standards and exploring sustainable nuclear solutions, the demand for advanced nuclear robots is increasing. This trend is supported by significant research and development efforts across the continent, fostering market expansion and technological innovation.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Nuclear robots industry 360° synopsis, 2021 - 2032
  • 2.2 Business trends
    • 2.2.1 Total addressable market (TAM), 2024-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing demand for nuclear energy
      • 3.8.1.2 Growing concerns about safety and security
      • 3.8.1.3 Rising demand for nuclear decommissioning
      • 3.8.1.4 Global expansion of nuclear energy
      • 3.8.1.5 Ongoing technological advancement
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Complexity and Integration
      • 3.8.2.2 Cybersecurity Vulnerabilities
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Nuclear Robots Market Estimates & Forecast, By Type, 2021-2032, (USD Million)

  • 5.1 Key trends, by type
  • 5.2 Remote manipulators
  • 5.3 Crawlers
  • 5.4 Aerial drones
  • 5.5 Underwater robots (ROVs)
  • 5.6 Humanoid robots

Chapter 6 Nuclear Robots Market Estimates & Forecast, By End-Use, 2021-2032, (USD Million)

  • 6.1 Key trends, By End-Use
  • 6.2 Nuclear waste handling
  • 6.3 Nuclear decommissioning
  • 6.4 Radiation cleanup
  • 6.5 Nuclear power plants
  • 6.6 Research and exploration
  • 6.7 Others

Chapter 7 Market Estimates & Forecast, By Region, 2021 - 2032 (USD Million)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 UK
    • 7.3.2 Germany
    • 7.3.3 France
    • 7.3.4 Italy
    • 7.3.5 Spain
    • 7.3.6 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 India
    • 7.4.3 Japan
    • 7.4.4 South Korea
    • 7.4.5 Rest of Asia Pacific
  • 7.5 Latin America
    • 7.5.1 Brazil
    • 7.5.2 Mexico
    • 7.5.3 Rest of Latin America
  • 7.6 MEA
    • 7.6.1 UAE
    • 7.6.2 South Africa
    • 7.6.3 Saudi Arabia
    • 7.6.4 Rest of MEA

Chapter 8 Company Profiles

  • 8.1 AB Precision (Poole) Ltd
  • 8.2 Areva
  • 8.3 Boston Dynamics
  • 8.4 Brokk Global
  • 8.5 Clearpath Robotics
  • 8.6 Diakont
  • 8.7 Hitachi, Ltd.
  • 8.8 James Fisher Technologies
  • 8.9 KUKA AG
  • 8.10 Mitsubishi Heavy Industries
  • 8.11 QinetiQ
  • 8.12 Reach robotics
  • 8.13 Robotnik
  • 8.14 SuperDroid Robots
  • 8.15 Walischmiller Engineering GmbH
  • 8.16 Westinghouse Electric Company
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦