½ÃÀ庸°í¼
»óÇ°ÄÚµå
1535897
¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë AI ½ÃÀå ±Ô¸ð : ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2024-2032³â)AI in Clinical Trials Market Size - By Component (Software, Service), By Technology (Machine Learning (ML), Natural Language Processing (NLP), Computer Vision, Contextual Bots), By Application, By End User & Forecast, 2024 - 2032 |
¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë AI ½ÃÀå ±Ô¸ð´Â AI ±â¼ú°ú ¸ÂÃãÇü ÀÇ·áÀÇ Áö¼ÓÀûÀÎ Áøº¸·Î 2024³âºÎÅÍ 2032³â »çÀÌ¿¡ 14%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
AI ¾Ë°í¸®ÁòÀ» °ÈÇÏ¸é º¸´Ù Á¤È®ÇÑ µ¥ÀÌÅÍ ºÐ¼®, º¸´Ù ½Å¼ÓÇÑ ÀǾàÇ° °³¹ß ¹× Å×½ºÆ® È¿À²¼º Çâ»óÀÌ °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ, °³ÀÎÈµÈ ÀÇ·áÀÇ ½ÃÀÛÀº °³º° ȯÀÚ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ¸ÂÃãÇü Ä¡·á °èȹÀ» °¡´ÉÇÏ°Ô ÇÏ°í Ä¡·á ¼ºÀûÀ» ÃÖÀûÈÇÕ´Ï´Ù. ÀΰøÁö´É ±â¼úÀÌ ÁøÈÇÏ°í °³º°È Á¢±Ù¹ýÀÌ º¸±ÞµÊ¿¡ µû¶ó ÀÌ·¯ÇÑ º¹ÇÕÀûÀÎ ¿µÇâÀ¸·Î ÀÓ»ó½ÃÇèÀÌ °¡¼Óȵǰí È¿À²ÀûÀÌ°í È¿°úÀûÀÎ ½ÃÀåÀÌ È®´ëµË´Ï´Ù.
¿¹¸¦ µé¾î, 2023³â 11¿ù, AstraZeneca´Â ÀÓ»ó½ÃÇè¿¡ AI¿Í µðÁöÅÐ Çコ ¼Ö·ç¼ÇÀ» ÅëÇÕÇÏ´Â Evinova¸¦ ¹ßÇ¥ÇÏ°í, CRO, ÀÓ»ó ÀÇ·ÚÀÚ, ÄɾîÆÀ, ȯÀÚ¸¦ Ÿ°ÙÀ¸·Î ÇÏ°í, ÀÌ È¸»ç°¡ ÀÌ¹Ì ¼¼°è¿¡¼ »ç¿ëÇÏ°í ÀÖ´Â ±â¼ú ¸¦ È°¿ëÇß½À´Ï´Ù. ÀÌ ¿òÁ÷ÀÓÀº ÀÓ»ó ¿¬±¸¿¡ ÷´Ü ±â¼úÀ» ÅëÇÕÇÏ°í, Çõ½ÅÀ» ÃËÁøÇÏ°í, ½ÃÇè °á°ú¸¦ °³¼±Çϸç, ½ÃÀå µµÀÔÀ» È®´ëÇÒ ¼ö ÀÖ´Â Ãß¼¼ Áõ°¡¸¦ º¸¿©ÁÝ´Ï´Ù. AstraZeneca¿Í °°Àº ´ë±â¾÷ÀÌ AI¸¦ äÅÃÇÏ´Â °ÍÀº ÀÓ»ó½ÃÇèÀÇ °úÁ¤°ú °á°ú¸¦ º¯È½ÃÅ°´Âµ¥ AIÀÇ ¿ªÇÒÀÌ È®´ëµÇ°í ÀÖÀ½À» °Á¶ÇÏ°í ÀÖ½À´Ï´Ù.
ÀÓ»ó½ÃÇè¿ë AI »ê¾÷Àº ÄÄÆ÷³ÍÆ®, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ª¿¡ µû¶ó ¼¼ºÐȵ˴ϴÙ.
¸Ó½Å·¯´× ºÎ¹®Àº 2024-2032³âÀ» ÅëÇØ »ó´çÇÑ ¼ºÀåÀ» ³ªÅ¸³À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¾öû³ ÀÓ»ó µ¥ÀÌÅÍ Ã³¸®, ÆÐÅÏ ½Äº° ¹× Å×½ºÆ® °á°ú ¿¹Ãø¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº µ¥ÀÌÅÍ ºÐ¼®¿¡ ¼Ò¿äµÇ´Â ½Ã°£À» Å©°Ô ´ÜÃàÇÏ°í ÀÇ»ç °áÁ¤ÀÇ Á¤È®¼ºÀ» ³ôÀÔ´Ï´Ù. Á¦¾à ȸ»ç´Â ȯÀÚ ¼±Åà ÃÖÀûÈ, ÀÓ»ó½ÃÇè ÁøÇà »óȲ ¸ð´ÏÅ͸µ, ±ÔÁ¦ ±âÁØ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ ¸Ó½Å·¯´×À» È°¿ëÇÕ´Ï´Ù. ÀÓ»ó½ÃÇè¿¡¼ ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº È¿À²¼ºÀ» Çâ»ó½ÃÅ°°í Àüü ½ÃÇèÀÇ ÁúÀ» Çâ»ó½ÃÅ°°í ½ÃÀå È®´ë¸¦ Áö¿øÇÕ´Ï´Ù.
ÀǾàÇ° ºÎ¹®Àº ÀǾàÇ° °³¹ß ÇÁ·Î¼¼½ºÀÇ °¡¼ÓÈ¿¡ ÀÖ¾î º¯ÇõÀû ¿µÇâÀ¸·Î ÀÎÇØ 2032³â±îÁö »ó´çÇÑ ÀÌÀÍÀ» ¾ò½À´Ï´Ù. AI ±â¼úÀº ¿¹Ãø ¸ðµ¨¸µÀ» °ÈÇÏ°í, ÀÓ»ó½ÃÇè ¼³°è¸¦ ÃÖÀûÈÇÏ°í, ÀáÀçÀûÀÎ ½Å¾à È常¦ º¸´Ù È¿À²ÀûÀ¸·Î ÆľÇÇÔÀ¸·Î½á ½Ã°£°ú ºñ¿ëÀ» ´ëÆø Àý°¨ÇÕ´Ï´Ù. °í±Þ ¾Ë°í¸®ÁòÀÌ ¾öû³ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ°í »õ·Î¿î ¾à¹° »óÈ£ ÀÛ¿ë°ú ¹ÙÀÌ¿À ¸¶Ä¿¸¦ ¹ß°ßÇÔÀ¸·Î½áº¸´Ù Ä¡¹ÐÇÑ Ä¡·á°¡ °¡´ÉÇÕ´Ï´Ù. Á¦¾àȸ»ç´Â â¾àÀ» ÇÕ¸®ÈÇÏ°í ¼º°ø·üÀ» Çâ»ó½ÃÅ°´Â AI¸¦ Á¡Á¡ ä¿ëÇÏ°í ÀÖÀ¸¸ç, ÀÌ ºÐ¾ß´Â ³ª¸§ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÓ»ó½ÃÇè¿ë AI ½ÃÀåÀº 2024³âºÎÅÍ 2032³â±îÁö ¿Ï¸¸ÇÑ CAGRÀ» ´Þ¼ºÇÕ´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ÀÇ·á ÀÎÇÁ¶ó°¡ ±Þ¼ÓÈ÷ ¹ßÀüÇÏ°í ÀÇÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ°í Á¤ºÎ Áö¿ø Á¤Ã¥ÀÌ AI µµÀÔ¿¡ µµ¿òÀ̵Ǵ ȯ°æÀ» Á¶¼ºÇÏ°í ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µîÀÇ ±¹°¡µéÀº ÀǷἺ°ú¸¦ °³¼±ÇÏ°í ¸¸¼ºÁúȯ ºÎ´ã Áõ°¡¿¡ ´ëóÇÒ Çʿ伺À¸·Î ÀΰøÁö´É±â¼úÀ» ÀÓ»ó½ÃÇè¿¡ ÅëÇÕÇÏ´Â ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ´ë±Ô¸ð ȯÀÚ Áý´ÜÀÇ Á¸Àç¿Í ÷´Ü ±â¼ú ¼Ö·ç¼ÇÀÇ °¡¿ë¼ºÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÓ»ó½ÃÇè¿ë AI »ê¾÷ÀÇ È®´ë¸¦ ´õ¿í °ÈÇÏ°í ÀÖ½À´Ï´Ù.
Global AI in Clinical Trials Market size will capture a 14% CAGR between 2024 and 2032, driven by continuous advancements in AI technologies and personalized medicine. Enhanced AI algorithms enable more accurate data analysis, faster drug development, and improved trial efficiency. Also, the rise of personalized medicine allows for tailored treatment plans based on individual patient data, optimizing therapeutic outcomes. As AI technologies evolve and personalized approaches become more prevalent, their combined impact will accelerate clinical trials, making them more efficient and effective, thereby expanding the market.
For instance, in November 2023, AstraZeneca introduced Evinova to integrate AI and digital health solutions into clinical trials, targeting CROs, trial sponsors, care teams, and patients, leveraging technologies already used globally by the company. This move indicates a rising trend towards integrating advanced technologies in clinical research, driving innovation, improving trial outcomes, and potentially increasing market adoption. As major players like AstraZeneca adopt AI, it underscores the expanding role of AI in transforming clinical trial processes and outcomes.
The AI in clinical trials industry is segmented based on component, technology, application, end-user, and region.
The machine learning segment will witness substantial growth throughout 2024-2032. Machine learning algorithms play a pivotal role in processing vast amounts of clinical data, identifying patterns, and predicting trial outcomes. These capabilities significantly reduce the time required for data analysis and enhance decision-making accuracy. Pharmaceutical companies are increasingly leveraging machine learning to optimize patient selection, monitor trial progress, and ensure compliance with regulatory standards. The integration of machine learning in clinical trials improves efficiency and enhances the overall quality of trials, supporting market expansion.
The drug discovery segment will amass considerable gains by 2032, attributed to its transformative impact on accelerating drug development processes. AI technologies enhance predictive modeling, optimize clinical trial designs, and identify potential drug candidates more efficiently, considerably reducing time and costs. Advanced algorithms analyze vast datasets to uncover novel drug interactions and biomarkers, leading to more targeted therapies. As pharmaceutical companies increasingly adopt AI for its ability to streamline discovery and improve success rates, this segment will hold a decent market share.
Asia Pacific AI in clinical trials market will achieve a moderate CAGR from 2024 to 2032. The region's rapidly evolving healthcare infrastructure, increasing investment in medical research, and supportive government policies create a conducive environment for AI adoption. Countries like China, India, and Japan are at the forefront of integrating AI technologies into clinical trials, driven by the need to improve healthcare outcomes and address the growing burden of chronic diseases. The presence of a large patient population and the availability of advanced technological solutions further support the expansion of the Asia Pacific AI in clinical trials industry.