½ÃÀ庸°í¼­
»óǰÄÚµå
1570600

ÀÚÀ²ÁÖÇà Â÷·® °øÀ¯ ½ÃÀå, ½ÃÀå µ¿Çâ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2024-2032³â)

Autonomous Ride-sharing Fleets Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 252 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ÀÚÀ²ÁÖÇà Â÷·® ½ÃÀåÀº 2023³â 9¾ï 1,060¸¸ ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ 63.5% ÀÌ»óÀÇ ³î¶ó¿î ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀº µµ½ÃÈ­ÀÇ ÁøÀü°ú ½º¸¶Æ® ½ÃƼ ±¸»óÀÇ ÃßÁøÀÔ´Ï´Ù. µµ½Ã°¡ È®ÀåµÊ¿¡ µû¶ó ±³Åë È¥ÀâÀ» ÇØ°áÇÏ°í ¿À¿°À» ¾ïÁ¦Çϱâ À§ÇÑ È¿À²ÀûÀÎ ±³Åë ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Á¤ºÎ ±ÔÁ¦´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â ¸íÈ®ÇÑ °¡À̵å¶óÀΰú ¾ÈÀü ±âÁØÀ» ¼³Á¤Çϰí ÀÚÀ²ÁÖÇàÂ÷ Å×½ºÆ®¿Í ¹èÄ¡¸¦ À§ÇÑ ±æÀ» ¿­¾îÁÝ´Ï´Ù. Á¤ºÎ´Â ÀÚÀ² ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¿Í Çõ½ÅÀ» ÃËÁøÇϱâ À§ÇØ Àμ¾Æ¼ºê, º¸Á¶±Ý, ¼¼Á¦ ÇýÅÃÀ» ÀÚÁÖ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ½Å¼ÓÇÑ ½ÂÀÎ ÀýÂ÷¿Í ÆÄÀÏ·µ ÇÁ·Î±×·¥Àº ÀÚÀ²ÁÖÇà Â÷·® °øÀ¯ ¼­ºñ½ºÀÇ ¹èÆ÷¸¦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ´Â Áö¿øÀûÀÎ ±ÔÁ¦ ȯ°æÀ» Á¶¼ºÇÔÀ¸·Î½á ±â¾÷ÀÇ ºÒÈ®½Ç¼º°ú À§ÇèÀ» ÁÙÀ̰í ÀÚÀ² ÁÖÇà Â÷·®¿¡ ´ëÇÑ ½Å·Ú¿Í ÅõÀÚ¸¦ °­È­ÇÏ¿© ½ÃÀå ¼ºÀå°ú äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÚÀ²ÁÖÇà °øÀ¯ Â÷·® »ê¾÷Àº ±â¼ú, ÀÚÀ²¼º ¼öÁØ, Â÷·® À¯Çü, ÃßÁø ¹æ½Ä, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº°·Î ºÐ·ùÇÒ ¼ö ÀÖ½À´Ï´Ù.

Â÷·® À¯Çüº°·Î´Â ÀÚµ¿Â÷¿Í ¼ÅƲ/¹êÀ¸·Î ³ª´µ¸ç, 2023³â¿¡´Â ÀÚµ¿Â÷°¡ 62% ÀÌ»óÀÇ Á¡À¯À²·Î ½ÃÀåÀ» Àå¾ÇÇϰí 2032³â¿¡´Â 419¾ï ´Þ·¯¸¦ ³Ñ¾î¼³ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿Â÷°¡ ÀÚÀ²ÁÖÇà Â÷·® °øÀ¯ ½ÃÀåÀ» ÁÖµµÇÏ´Â ÀÌÀ¯´Â ÀÚµ¿Â÷ÀÇ ÀûÀÀ¼º, ±¤¹üÀ§ÇÑ ¼ÒºñÀÚ ¼ö¿ë¼º, ´Ù¾çÇÑ ¶óÀ̵å¼Î¾î¸µ ½Ã³ª¸®¿À¿¡ ´ëÇÑ ÀûÀÀ¼º ¶§¹®ÀÔ´Ï´Ù. °³ÀÎ ¹× ¼Ò±Ô¸ð ±×·ì À̵¿¿¡ ÀûÇÕÇϱ⠶§¹®¿¡ ¶óÀ̵å¼Î¾î¸µ ¼ö¿ä°¡ °¡Àå ³ôÀº µµ½Ã¿Í ±³¿Ü Áö¿ª¿¡¼­ °¡Àå À¯·ÂÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÃßÁø·Âº°·Î º¸¸é, ½ÃÀå¿¡´Â Àü±âÀÚµ¿Â÷(EV), ÇÏÀ̺긮µå ÀÚµ¿Â÷, ³»¿¬±â°üÂ÷(ICE)°¡ Æ÷ÇԵǸç, 2023³â¿¡´Â Àü±âÀÚµ¿Â÷(EV)°¡ ½ÃÀå Á¡À¯À²ÀÇ ¾à 53%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇÏ°í ¿î¿µºñ¿ëÀ» Àý°¨ÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¹èÃâ°¡½º°¡ ÀüÇô ¾ø´Â Àü±âÂ÷´Â µµ½Ã ´ë±â ¿À¿°À» ÇØ°áÇÏ°í ¾ö°ÝÇÑ È¯°æ ±âÁØÀ» ÃæÁ·ÇÕ´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ±â¼ú°ú ÃæÀü ÀÎÇÁ¶óÀÇ ¹ßÀüÀº ´ë±Ô¸ð Â÷·® ¿î¿µ¿¡¼­ EVÀÇ ½ÇÇö °¡´É¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

2023³â ÀÚÀ²ÁÖÇà Â÷·® °øÀ¯ ½ÃÀå ±Ô¸ð´Â ºÏ¹Ì°¡ 37% ÀÌ»óÀÇ Á¡À¯À²À» Â÷ÁöÇÏ¸ç ¾ÐµµÀûÀÎ ¿ìÀ§¸¦ Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2032³â¿¡´Â 251¾ï ´Þ·¯¸¦ ³Ñ¾î¼³ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¿øµ¿·ÂÀº ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú ¹ßÀü°ú ¾÷°è ¼±µÎÁÖÀÚµéÀÇ ´ë±Ô¸ð ÅõÀÚ¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â °­·ÂÇÑ ÀÎÇÁ¶ó¿Í Áö¿øÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ±×¸®°í ÀÚÀ²ÁÖÇàÂ÷ ±â¼úÀÇ Á¶±â µµÀÔÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ¾î ÁÖµµ±ÇÀ» ÀâÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
  • °ø±Þ¾÷ü »óȲ
    • ÀÚµ¿Â÷ Á¦Á¶¾÷ü
    • ±â¼ú Á¦°ø¾÷ü
    • ¶óÀÌµå ¼Î¾î¸µ Ç÷§Æû
    • ÀÎÇÁ¶ó ÇÁ·Î¹ÙÀÌ´õ
    • µ¥ÀÌÅÍ °ü¸® ¹× »çÀ̹ö º¸¾È ±â¾÷
  • ÀÌÀÍ·ü ºÐ¼®
  • ±â¼ú ¹× Çõ½Å Àü¸Á
  • ƯÇ㠺м®
  • ÁÖ¿ä ´º½º¿Í ÀÌ´Ï¼ÅÆ¼ºê
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ©£¦°úÁ¦
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ±â¼úº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Çϵå¿þ¾î
    • ¼¾¼­(LiDAR, RADAR)
    • Ä«¸Þ¶ó
    • ÄÄÇ»ÆÃ À¯´Ö
    • Åë½Å ±â±â
  • ¼ÒÇÁÆ®¿þ¾î
    • ÀÚÀ²ÁÖÇà ¼ÒÇÁÆ®¿þ¾î
    • Â÷·® °ü¸® ½Ã½ºÅÛ
    • ¶óÀÌµå ¼Î¾î¸µ Ç÷§Æû

Á¦6Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÀÚÀ²ÁÖÇà ·¹º§º°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ·¹º§ 4
  • ·¹º§ 5

Á¦7Àå ½ÃÀå ¿¹Ãø : Â÷·®º° ½ÃÀå Ã߻ꡤ¿¹Ãø : Â÷·®º°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ÀÚµ¿Â÷
  • ¼ÅƲ/¹ê

Á¦8Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÃßÁø·Âº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Àü±âÀÚµ¿Â÷(EV)
  • ÇÏÀ̺긮µå ÀÚµ¿Â÷
  • ICE(Àü±âÀÚµ¿Â÷)

Á¦9Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÃÖÁ¾»ç¿ëÀÚº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ±â¾÷
  • °³ÀÎ ºÎ¹®

Á¦10Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : Áö¿ªº°, 2021³â-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ·¯½Ã¾Æ
    • ºÏÀ¯·´
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ´ºÁú·£µå
    • µ¿³²¾Æ½Ã¾Æ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ±â¾÷ °³¿ä

  • 2getthere
  • Aptiv
  • Argo AI
  • Aurora Innovation
  • Autox, Inc.
  • Baidu Apollo
  • Beijing Didi Chuxing Technology Co., Ltd.
  • Bollinger Motors
  • Byton
  • Cruise Vehicles
  • EasyMile
  • Einride
  • Motional
  • Nuro
  • Oculii Corp.
  • Pony.ai
  • Tesla
  • Uber Technologies Inc
  • Waymo
  • Zoox
LSH 24.10.29

The Global Autonomous Ride-sharing Fleets Market was valued at USD 910.6 million in 2023 and is projected to grow at a staggering CAGR of over 63.5% from 2023 to 2032. Key growth drivers include rising urbanization and the push for smart city initiatives. As cities expand, there is an escalating need for efficient transportation solutions to tackle traffic congestion and curb pollution.

Government regulations play a pivotal role in propelling the market growth. These regulations set clear guidelines and safety standards, paving the way for testing and deploying autonomous vehicles. To spur investments and innovations in autonomous technology, governments frequently offer incentives, grants, and tax benefits. Moreover, expedited approval processes and pilot programs hasten the rollout of autonomous ride-sharing services. By fostering a supportive regulatory landscape, governments mitigate uncertainty and risk for companies, bolstering confidence and investments in autonomous fleets, thus driving market growth and adoption.

The autonomous ride-sharing fleets industry is categorized by technology, level of autonomy, vehicle type, propulsion method, end-user, and region.

By vehicle type, the market is divided into cars and shuttles/vans. In 2023, cars dominated the market with a share exceeding 62%, projected to surpass USD 41.9 billion by 2032. Cars led the autonomous ride-sharing market due to their adaptability, broad consumer acceptance, and fit for diverse ride-sharing scenarios. This suitability for individual and small-group transport makes them the top choice in urban and suburban locales, where ride-sharing demand is highest.

By propulsion, the market includes electric vehicles (EVs), hybrid vehicles, and internal combustion engines (ICE). In 2023, electric vehicles (EVs) captured around 53% of the market share, thanks to their alignment with sustainability objectives and reduced operational costs. With zero emissions, EVs tackle urban air pollution and comply with stringent environmental standards. Moreover, advancements in battery tech and charging infrastructure bolster the feasibility of EVs for large-scale fleet operations.

North America held a dominant position in the autonomous ride-sharing fleets market in 2023, accounting for over 37% of the share, with projections to exceed USD 25.1 billion by 2032. This growth is fueled by notable technological advancements and hefty investments from major industry players. The U.S. and Canada, benefiting from strong infrastructure, supportive regulatory frameworks, and early adoption of autonomous vehicle technology, will lead the charge.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research and validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Vehicle manufacturers
    • 3.2.2 Technology providers
    • 3.2.3 Ride-sharing platforms
    • 3.2.4 Infrastructure providers
    • 3.2.5 Data management and cybersecurity firms
  • 3.3 Profit margin analysis
  • 3.4 Technology and innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing urbanization and smart city initiatives
      • 3.8.1.2 Favourable government regulatory support and frameworks
      • 3.8.1.3 Technological advancements in AI, ML, sensors, and computing power
      • 3.8.1.4 Cost efficiency and operational benefits of autonomous ride-sharing fleets
    • 3.8.2 Industry pitfalls and challenges
      • 3.8.2.1 High development and deployment costs
      • 3.8.2.2 Regulatory and legal challenges
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates and Forecast, By Technology, 2021 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 Sensors (LiDAR, RADAR)
    • 5.2.2 Cameras
    • 5.2.3 Computing units
    • 5.2.4 Communication devices
  • 5.3 Software
    • 5.3.1 Autonomous driving software
    • 5.3.2 Fleet management systems
    • 5.3.3 Ride-sharing platforms

Chapter 6 Market Estimates and Forecast, By Level of Autonomy, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Level 4
  • 6.3 Level 5

Chapter 7 Market Estimates and Forecast, By Vehicle, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Cars
  • 7.3 Shuttles/Vans

Chapter 8 Market Estimates and Forecast, By Propulsion, 2021 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Electric vehicles (EVs)
  • 8.3 Hybrid vehicles
  • 8.4 ICE

Chapter 9 Market Estimates and Forecast, By End-user, 2021 - 2032 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 Government and public sector
  • 9.3 Corporate sector
  • 9.4 Individuals

Chapter 10 Market Estimates and Forecast, By Region, 2021 - 2032 ($Bn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 UK
    • 10.3.2 Germany
    • 10.3.3 France
    • 10.3.4 Spain
    • 10.3.5 Italy
    • 10.3.6 Russia
    • 10.3.7 Nordics
    • 10.3.8 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 South Korea
    • 10.4.5 ANZ
    • 10.4.6 Southeast Asia
    • 10.4.7 Rest of Asia Pacific
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
    • 10.5.4 Rest of Latin America
  • 10.6 MEA
    • 10.6.1 UAE
    • 10.6.2 South Africa
    • 10.6.3 Saudi Arabia
    • 10.6.4 Rest of MEA

Chapter 11 Company Profiles

  • 11.1 2getthere
  • 11.2 Aptiv
  • 11.3 Argo AI
  • 11.4 Aurora Innovation
  • 11.5 Autox, Inc.
  • 11.6 Baidu Apollo
  • 11.7 Beijing Didi Chuxing Technology Co., Ltd.
  • 11.8 Bollinger Motors
  • 11.9 Byton
  • 11.10 Cruise Vehicles
  • 11.11 EasyMile
  • 11.12 Einride
  • 11.13 Motional
  • 11.14 Nuro
  • 11.15 Oculii Corp.
  • 11.16 Pony.ai
  • 11.17 Tesla
  • 11.18 Uber Technologies Inc
  • 11.19 Waymo
  • 11.20 Zoox
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦