½ÃÀ庸°í¼­
»óǰÄÚµå
1577311

Ç×°ø Àü¿ë ¼¾¼­ ½ÃÀå, ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м®°ú ¿¹Ãø(2024-2032³â)

Aeroderivative Sensor Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 227 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Ç×°ø Àü¿ë ¼¾¼­ ½ÃÀåÀº 2023³â¿¡ 3¾ï 1,890¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2024-2032³â CAGR 8.5% ÀÌ»óÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¹Î°£ Ç×°ø±â¿Í ±º¿ë Ç×°ø±â ¸ðµÎ¿¡¼­ ÷´Ü Ç×°ø¿ìÁÖ ½Ã½ºÅÛÀÇ È®ÀåÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ¿£Áø ¼º´É, Ç×¹ý, ȯ°æ ¸ð´ÏÅ͸µ µî ´Ù¾çÇÑ Ç×°ø±â ½Ã½ºÅÛÀ» ¸ð´ÏÅ͸µÇϰí Á¶Á¤ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¼ÒÇüÈ­ ¹× Á¤È®µµ Çâ»ó°ú °°Àº ±â¼ú Çõ½ÅÀÌ Ç×°ø¿ë ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ±¤¼¶À¯ ¼¾¼­, MEMS(Micro-Electro-Mechanical Systems: ¹Ì¼¼ Àü±â ±â°è ½Ã½ºÅÛ), ÷´Ü ¼ÒÀç¿Í °°Àº Çõ½ÅÀº ¼¾¼­ÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Á¤È®ÇÑ ÃøÁ¤, ³»±¸¼º Çâ»ó, ¼ÒÇü ½Ã½ºÅÛÀ¸·ÎÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡Á®¿Í ´Ù¾çÇÑ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ Ç÷§Æû¿¡ ±¤¹üÀ§ÇÏ°Ô Ã¤Åõǰí ÀÖ½À´Ï´Ù.

Ç×°ø ÆÄ»ý ¼¾¼­ »ê¾÷Àº ÃֽŠÇ×°ø¿ìÁÖ ½Ã½ºÅÛ¿¡¼­ ÷´Ü ¼¾¼­ÀÇ ÅëÇÕÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ½º¸¶Æ® Ç×°ø±â¿Í ¹«ÀÎÇ×°ø±â(UAV)ÀÇ µîÀåÀ¸·Î °¡È¤ÇÑ Á¶°Ç¿¡¼­µµ Á¤È®¼º, ½Å·Ú¼º, º¹¿ø·ÂÀ» Á¦°øÇÏ´Â ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÇÏ´ÏÀ£Àº 2024³â 5¿ù ¸±¸®¿ò(Lirium)ÀÇ ¿ÏÀü Àü±â ¼öÁ÷ÀÌÂø·ú(eVTOL) Á¦Æ®±â¸¦ À§ÇÑ °æ·® ¸ÂÃãÇü ¼¾¼­¸¦ Ãâ½ÃÇß½À´Ï´Ù. ¿£ÁøÀÇ Á¤È®ÇÑ À§Ä¡ °áÁ¤¿¡ ÇʼöÀûÀÎ ÀÌ Ã·´Ü ¼¾¼­´Â ¸±¸®¿òÀÇ ºñÀüÀÎ ¹«°øÇØ, Áö¼Ó°¡´ÉÇÑ °í¼Ó Áö¿ª Ç×°ø ¸ðºô¸®Æ¼¸¦ ½ÇÇöÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.

½ÃÀåÀº ¼¾¼­ÀÇ À¯ÇüÀ» °¡¼Óµµ°è, ¿Âµµ ¼¾¼­, Áøµ¿ ¼¾¼­, ¾Ð·Â ¼¾¼­, È­¿° ¼¾¼­, ±âŸ·Î ºÐ·ùÇϰí ÀÖ½À´Ï´Ù. ¿Âµµ ¼¾¼­ ºÐ¾ß´Â 2032³â±îÁö 2¾ï ´Þ·¯ ÀÌ»ó¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °¡¼Óµµ°è´Â Áøµ¿°ú Ãæ°ÝÀ» ¸ð´ÏÅ͸µÇÏ´Â Ç×°ø ¿£Áø¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¹Áöº¸ÀüÀ» ¿ëÀÌÇÏ°Ô ÇÔÀ¸·Î½á ¿îÀüÀÇ ¾ÈÀü¼ºÀ» Å©°Ô Çâ»ó½Ãŵ´Ï´Ù. °¡¼Óµµ¸¦ °¨ÁöÇϰí ÃøÁ¤ÇÏ´Â ´É·ÂÀº ½Ç½Ã°£ µ¥ÀÌÅͰ¡ ¼º´É ÃÖÀûÈ­¿¡ ÇʼöÀûÀÎ µ¿Àû ȯ°æ¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù.

Ç×°ø Àü¿ë ¼¾¼­ ½ÃÀåÀº ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ¸¦ ¾ÖÇÁÅ͸¶Äϰú OEM ºÎ¹®À¸·Î ºÐ·ùÇϰí ÀÖÀ¸¸ç, OEM ºÎ¹®Àº 2024-2032³â 9% ÀÌ»óÀÇ CAGR·Î ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, Ç×°ø Àü¿ë ¼¾¼­ÀÇ Ãʱ⠼³Á¤°ú ¿£Áø¿¡ ´ëÇÑ ÅëÇÕ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. OEMÀº Ç×°ø Àü¿ë ¿£ÁøÀÇ Æ¯Á¤ ¿ä±¸»çÇ׿¡ ¸Â°Ô ¸ÂÃãÈ­µÈ °íǰÁú ¼¾¼­ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ȣȯ¼º°ú ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌµé °ø±Þ¾÷ü´Â ¿£Áø Á¦Á¶¾÷ü¿Í Àå±âÀûÀÎ Çù·Â °ü°è¸¦ ±¸ÃàÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, ¿Ïº®ÇÑ ÅëÇÕÀ» À§ÇØ ¼¼½ÉÇÏ°Ô Á¦À۵ǰí Å×½ºÆ®µÈ ¼¾¼­¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ºÎ¹®Àº ¼¾¼­ ±³Ã¼, Àç±³Á¤, ÷´Ü ±â¼ú·ÎÀÇ ¾÷±×·¹À̵å¿Í °°Àº ¼­ºñ½º¸¦ Á¦°øÇÏ¿© ¿£ÁøÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

2023³â ºÏ¹Ì°¡ 40%°¡ ³Ñ´Â Á¡À¯À²·Î ¼¼°è Ç×°ø °¨¼Ó ¼¾¼­ ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ìÀ§´Â °­·ÂÇÑ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÎ¹®°ú ¿¡³ÊÁö ¹× ¹ßÀü ºÎ¹®¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿¡ ±âÀÎÇÕ´Ï´Ù. ¹Ì±¹Àº ÁÖ¿ä Ç×°ø±â Á¦Á¶¾÷ü, ¿£Áø Á¦Á¶¾÷ü ¹× ±â¼ú °³¹ßÀÚÀÇ º»°ÅÁöÀÌÀÚ ±â¼ú Çõ½ÅÀÇ Çãºê·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ±º¿ë ¹× ¹Î°£ Ç×°ø ¸ðµÎ ¿£ÁøÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÀÖÀ¸¸ç, Ç×°ø Àü¿ë ¼¾¼­ÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °í·ÁÇÒ ¶§, ¹Ì±¹ ½ÃÀåÀº »ó´çÇÑ ±Ô¸ðÀÔ´Ï´Ù. ¶ÇÇÑ ºÏ¹Ì´Â ±ºÀû ¾÷±×·¹À̵忡 ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, È¿À²ÀûÀÎ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Ç×°ø Àü¿ë ¼¾¼­ »ê¾÷À» ´õ¿í Áö¿øÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå °³¿ä

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • ¿¡ÄڽýºÅÛ ºÐ¼®
  • º¥´õ ¸ÅÆ®¸¯½º
  • ÀÌÀÍ·ü ºÐ¼®
  • Å×Å©³î·¯Áö¿Í Çõ½Å Àü¸Á
  • ƯÇ㠺м®
  • ÁÖ¿ä ´º½º¿Í ±¸»ó
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ÃËÁø¿äÀÎ
      • ÷´Ü Ç×°ø¿ìÁÖ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿äÀÇ Áõ°¡
      • ¼¾¼­ ±â¼úÀÇ Áøº¸
      • ¹Î°£ Ç×°øÀÇ È®´ë
      • Á¤ºñ¿Í ¾÷±×·¹À̵忡 ´ëÇÑ ÁÖ·Â
      • ¹æÀ§¡¤±º ¿ëµµÀÇ È®´ë
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ© & °úÁ¦
      • ³ôÀº °³¹ß¡¤Á¦Á¶ ºñ¿ë
      • º¹ÀâÇÑ ±ÔÁ¦¿Í ÀÎÁõ ¿ä°Ç
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • PorterÀÇ »ê¾÷ ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ±â¾÷ Á¡À¯À² ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« Àü¸Á ¸ÅÆ®¸¯½º

Á¦5Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ¼¾¼­ À¯Çüº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • °¡¼Óµµ°è
  • ¿Âµµ ¼¾¼­
  • Áøµ¿ ¼¾¼­
  • ¾Ð·Â¼¾¼­
  • ºÒ²É °¨Áö ¼¾¼­
  • ±âŸ

Á¦6Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ¾ÖÇÁÅ͸¶ÄÏ
  • OEM ½ÃÀå

Á¦7Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : ÃÖÁ¾»ç¿ëÀÚº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • »ê¾÷
  • ÇØ¾ç

Á¦8Àå ½ÃÀå Ã߻ꡤ¿¹Ãø : Áö¿ªº°, 2021-2032³â

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ´ºÁú·£µå
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • UAE
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ±â¾÷ °³¿ä

  • Bently Nevada
  • Columbia Research Laboratories, Inc.
  • Conax Technologies
  • EthosEnergy
  • KISTLER INSTRUMENT CORP.
  • Kulite
  • Meggitt PLC
  • PCB Piezotronics, Inc.
  • RWG
  • Scanivalve Corporation
  • Sensonics Ltd.
  • Smith Systems, Inc.
  • Thermocoax, Inc.
  • TurbineAero, Inc.
  • Unison, LLC
  • Honeywell International Inc.
  • GE Aviation
  • Eaton Corporation
  • Parker Hannifin Corporation
  • TE Connectivity
  • Woodward, Inc.
  • Rockwell Collins
  • Safran
  • Thales Group
  • Moog Inc.
KSA 24.11.07

The Global Aeroderivative Sensor Market was valued at USD 318.9 million in 2023 and is projected to grow at a CAGR of over 8.5% from 2024 to 2032. The market growth is driven by the expansion of advanced aerospace systems in both commercial and military aircraft. These sensors are crucial for monitoring and regulating various aircraft systems, including engine performance, navigation, and environmental oversight.

Technological innovations, such as miniaturization and improved accuracy, fuel the growth of the aeroderivative sensor market. Breakthroughs like fiber optic sensors, Micro-Electro-Mechanical Systems (MEMS), and advanced materials enhance sensor performance and reliability. These innovations result in precise measurements, increased durability, and seamless integration into compact systems, leading to widespread adoption in various aerospace and defense platforms.

The aeroderivative sensor industry is experiencing significant growth due to the increasing integration of advanced sensors in modern aerospace systems. With the rise of smart aircraft and unmanned aerial vehicles (UAVs), there's a growing demand for sensors that offer precision, reliability, and resilience under extreme conditions. For example, in May 2024, Honeywell unveiled lightweight, custom-engineered sensors for Lilium's all-electric vertical takeoff and landing (eVTOL) jet. These state-of-the-art sensors, vital for accurate engine positioning, align with Lilium's vision of achieving sustainable, high-speed regional air mobility with zero emissions.

The overall aeroderivative sensor market is classified based on sensor type, service provider, end use , and region.

The market categorizes sensor types into accelerometers, temperature sensors, vibration sensors, pressure sensors, flame sensors, and others. The temperature sensor segment is projected to surpass USD 200 million by 2032. Accelerometers play a crucial role in aeroderivative engines, monitoring vibrations and shocks. By facilitating predictive maintenance, they significantly bolster operational safety. Their ability to detect and measure acceleration forces is essential in dynamic environments, where real-time data is critical for performance optimization.

The aeroderivative sensor market segments service providers into aftermarket and OEM categories. The OEM segment, growing rapidly with a CAGR of over 9% from 2024 to 2032, plays a crucial role in the initial setup and integration of aeroderivative sensors in engines, ensuring both compatibility and optimal performance. OEMs provide customized, high-quality sensor solutions tailored to the specific needs of aeroderivative engines. These providers often establish long-term collaborations with engine manufacturers, offering sensors that are meticulously crafted and tested for flawless integration. This segment is vital for extending engine longevity, providing services like sensor replacements, recalibrations, and upgrades to cutting-edge technologies.

In 2023, North America led the global aeroderivative sensor market with a share exceeding 40%. The region's dominance is attributed to its strong aerospace and defense sectors, coupled with significant investments in energy and power generation. The U.S. emerges as a hub of innovation, home to leading aircraft manufacturers, engine producers, and tech developers. Given the pivotal role of aeroderivative sensors in enhancing engine performance and reliability for both military and commercial aviation, the U.S. market is substantial. Additionally, North America's focus on military upgrades and the growing need for efficient energy solutions further prop up the aeroderivative sensor industry.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Base estimates and calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Vendor matrix
  • 3.3 Profit margin analysis
  • 3.4 Technology and innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news and initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing demand for advanced aerospace systems
      • 3.8.1.2 Technological advancements in sensor technology
      • 3.8.1.3 Expansion of commercial aviation
      • 3.8.1.4 Focus on maintenance and upgrades
      • 3.8.1.5 Growing defense and military applications
    • 3.8.2 Industry pitfalls and challenges
      • 3.8.2.1 High development and manufacturing costs
      • 3.8.2.2 Complex regulatory and certification requirements
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
    • 3.10.1 Supplier power
    • 3.10.2 Buyer power
    • 3.10.3 Threat of new entrants
    • 3.10.4 Threat of substitutes
    • 3.10.5 Industry rivalry
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates and Forecast, By Sensor Type, 2021 - 2032 (USD million)

  • 5.1 Key trends
  • 5.2 Accelerometer
  • 5.3 Temperature sensor
  • 5.4 Vibration sensor
  • 5.5 Pressure sensor
  • 5.6 Flame sensor
  • 5.7 Others

Chapter 6 Market Estimates and Forecast, By Service Provider, 2021 - 2032 (USD million)

  • 6.1 Key trends
  • 6.2 Aftermarket
  • 6.3 OEM

Chapter 7 Market Estimates and Forecast, By End-use, 2021 - 2032 (USD million)

  • 7.1 Key trends
  • 7.2 Industrial
  • 7.3 Marine

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2032 (USD million)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 ANZ
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Rest of Latin America
  • 8.6 MEA
    • 8.6.1 UAE
    • 8.6.2 South Africa
    • 8.6.3 Saudi Arabia
    • 8.6.4 Rest of MEA

Chapter 9 Company Profiles

  • 9.1 Bently Nevada
  • 9.2 Columbia Research Laboratories, Inc.
  • 9.3 Conax Technologies
  • 9.4 EthosEnergy
  • 9.5 KISTLER INSTRUMENT CORP.
  • 9.6 Kulite
  • 9.7 Meggitt PLC
  • 9.8 PCB Piezotronics, Inc.
  • 9.9 RWG
  • 9.10 Scanivalve Corporation
  • 9.11 Sensonics Ltd.
  • 9.12 Smith Systems, Inc.
  • 9.13 Thermocoax, Inc.
  • 9.14 TurbineAero, Inc.
  • 9.15 Unison, LLC
  • 9.16 Honeywell International Inc.
  • 9.17 GE Aviation
  • 9.18 Eaton Corporation
  • 9.19 Parker Hannifin Corporation
  • 9.20 TE Connectivity
  • 9.21 Woodward, Inc.
  • 9.22 Rockwell Collins
  • 9.23 Safran
  • 9.24 Thales Group
  • 9.25 Moog Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦