![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1741024
SVC(Static VAR Compensators) ½ÃÀå : ½ÃÀå ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)Static VAR Compensator Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
¼¼°èÀÇ SVC(Static VAR Compensators) ½ÃÀå ±Ô¸ð´Â 2024³â 281¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, CAGR 5.1%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2034³â¿¡´Â 458¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.
À̰ÍÀº ½ÅÀç»ý ¿¡³ÊÁö¿øÀÇ Çö´ëÀûÀÎ Àü·Â¸ÁÀ¸·ÎÀÇ ÅëÇÕÀÌ °¡¼ÓµÇ°í Á¤¹ÐÇÑ ¹«È¿ Àü·Â Á¦¾îÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ¿äÀÎÀÔ´Ï´Ù. ¿¡³ÊÁö Á¤¼¼°¡ ±Þ¼ÓÈ÷ º¯ÈÇÏ´Â °¡¿îµ¥ Àü·Â¸ÁÀº ½Å·Ú¼º, À¯¿¬¼º, ȸº¹·Â¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ¿ä±¸¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ž籤, dz·Â, ±× ¿ÜÀÇ ½ÅÀç»ý ¿¡³ÊÁö¿ø¿¡ ÀÇÇÑ ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ½ÃÇÁÆ®´Â, º¯µ¿ÇÏ´Â ¿¡³ÊÁö ÀÔ·ÂÀ» °ü¸®ÇÒ ¼ö ÀÖ´Â °íµµÀÇ ±â¼úÀÇ Ã¤¿ëÀ» ¼ÛÀü¸Á ¿î¿ëÀÚ¿¡°Ô ÀçÃËÇϰí ÀÖ½À´Ï´Ù.
SVC(Static VAR Compensators)´Â µ¿Àû ¹«È¿ Àü·Â Áö¿ø°ú ½Ç½Ã°£ Àü¾Ð Á¶Á¤À» Á¦°øÇÏ°í °èÅë ¾ÈÁ¤È¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î ºÎ»óÇØ ¿Ô½À´Ï´Ù. ûÁ¤¿¡³ÊÁöÀÇ Àǹ«È, µµ½ÃÈ, ¼¼°è Àü·Â¼Òºñ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ¼ÛÀü¸ÁÀÌ Çö´ëȵʿ¡ µû¶ó SVC µµÀÔÀº ´õ ÀÌ»ó ¿É¼ÇÀÌ ¾Æ´Ï¶ó ÇʼöºÒ°¡°áÇÑ °ÍÀÌ µÇ°í ÀÖ½À´Ï´Ù. SVC ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÏ°í ¼ÛÀü¿ë·®À» ÃÖÀûÈÇÏ¸ç ´Ù¾çÇÑ Áö¿ª¿¡¼ Á¡Á¡ ¾ö°ÝÇØÁö´Â ¼ÛÀü¸Á ±Ô¾à¿¡ ´ëÇÑ ÁذŸ¦ È®º¸ÇÒ Çʿ伺¿¡ ÀÇÇØ¼µµ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× Àü·Âȸ»ç°¡ ³ëÈÄÈµÈ ÀÎÇÁ¶ó ¾÷±×·¹À̵å¿Í ½º¸¶Æ®±×¸®µå ½ÃÀå °³Ã´À» ¿ì¼±½ÃÇϰí Àֱ⠶§¹®¿¡ Á¤Àû VAR º¸»ó±â ½ÃÀåÀº ²ÙÁØÇϰí Àå±âÀûÀÎ È®´ë°¡ Àü¸ÁµÇ°í ÀÖ½À´Ï´Ù.
½ÃÀå ¹üÀ§ | |
---|---|
½ÃÀÛ ¿¬µµ | 2024³â |
¿¹Ãø ¿¬µµ | 2025-2034³â |
½ÃÀÛ ±Ý¾× | 281¾ï ´Þ·¯ |
¿¹Ãø ±Ý¾× | 458¾ï ´Þ·¯ |
CAGR | 5.1% |
ž籤 ¹ßÀü, dz·Â ¹ßÀü ¹× ±âŸ °£ÇæÀûÀÎ ¿¡³ÊÁö¿øÀÌ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ¼ÛÀü¸ÁÀÇ Àü¾Ð ¾ÈÁ¤¼º À¯Áö´Â Á¡Á¡ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. SVC´Â Àü¾Ð º¯µ¿À» µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© Çʿ信 µû¶ó ¹«È¿ Àü·ÂÀ» Èí¼ö ¶Ç´Â »ý¼ºÇÏ°í °èÅë ¹æÇظ¦ ȸÇÇÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. ºÎÇÏ º¯µ¿¿¡ ½Ç½Ã°£À¸·Î ´ëÀÀÇÏ´Â SVCÀÇ ´É·ÂÀº Àü·Â ǰÁú ¹®Á¦¸¦ ¹æÁöÇÏ°í ¼ÛÀü ¼Õ½ÇÀ» Àú°¨Çϸç Àü±â ÀÎÇÁ¶ó ÀüüÀÇ È¿À²À» ³ôÀ̱â À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. °¢±¹ÀÌ ¾ß½ÉÂù ûÁ¤¿¡³ÊÁö ¸ñÇ¥¸¦ ÃßÁøÇÏ´Â °¡¿îµ¥ Á¤Àû VAR º¸»óÀåÄ¡¿Í °°Àº °èÅëÁö¿ø ±â¼úÀÇ ¿ªÇÒÀº Á¡Á¡ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½ÅÀç»ý Àü·ÂÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿ªµ¿ÀûÀÎ Àü¾Ð Á¶Á¤°ú ¹«È¿ Àü·Â Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. ž籤 ¹ßÀü¼Ò¿Í dz·Â ¹ßÀü¼ÒÀÇ ±Þ¼ÓÇÑ Áõ°¡·Î ÀÎÇØ ¿¡³ÊÁö Ãâ·Â¿¡ º¯µ¿ÀÌ »ý±é´Ï´Ù. SVC°¡ ¾ø´Ù¸é ÀÌ·¯ÇÑ ºÒ±ÔÄ¢¼ºÀÌ Àü¾Ð ºÒ¾ÈÁ¤À̳ª Á¤Àü, ¼¶¼¼ÇÑ ±â±â ¼Õ»óÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
»çÀ̸®½ºÅÍ ±â¹Ý SVC(Static VAR Compensators) ºÎ¹®Àº 2034³â±îÁö ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â Àü·Â¸Á ÀüüÀÇ ¹«È¿ Àü·Â Á¶Á¤°ú Àü¾Ð ¾ÈÁ¤ÀÇ Áö¼ÓÀûÀÎ Çʿ信 ÀÇÇØ °ßÁ¶ÇÏ°Ô ÃßÀÌÇϰí ÀÖ½À´Ï´Ù. °øÀÍ»ç¾÷°ú »ê¾÷°è´Â Àü¾Ðº¯µ¿ ¿ÏÈ¿Í ¿ª·ü ¹®Á¦¿¡ ´ëóÇϱâ À§ÇØ SVC¿¡ ´ëÇÑ ÀÇÁ¸À» °ÈÇϰí ÀÖÀ¸¸ç, À̵éÀº ¸ðµÎ ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â °ø±ÞÀ» À¯ÁöÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ Àü·Â ¼ÒºñÀÇ Áõ°¡·Î À̾îÁö´Â ½ÅÈï±¹ÀÇ ±Þ¼ÓÇÑ °ø¾÷Ȱ¡ ÀÌ·¯ÇÑ º¸»ó ÀåÄ¡ÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
À¯Æ¿¸®Æ¼ ±â¹ÝÀÇ SVC(Static VAR Compensators) ºÎ¹®Àº 2024³â¿¡ 42.1%ÀÇ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¼ÛÀü¸Á ÀÎÇÁ¶ó ¾÷±×·¹ÀÌµå ¹× È®ÀåÀ» À§ÇÑ ÅõÀÚ Áõ°¡°¡ SVC ¼ö¿ä¸¦ Å©°Ô ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. Àü·Âȸ»ç´Â ¿¡³ÊÁö ºñ¿ëÀ» Àý°¨ÇÏ°í ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈÇÏ¸ç ±×¸®µå ¼º´ÉÀ» ³ôÀÌ´Â ¼Ö·ç¼ÇÀ» Ç×»ó ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. SVC´Â Àü·Â ǰÁú Çâ»ó, ¿¡³ÊÁö ¼Õ½Ç °¨¼Ò, Àú·Â·ü¿¡ µû¸¥ ÆÐ³ÎƼ °æ°¨À» ÅëÇØ ÀÌ·¯ÇÑ ¸ñÇ¥ ´Þ¼ºÀ» Áö¿øÇÕ´Ï´Ù.
¹Ì±¹ÀÇ SVC(Static VAR Compensators) ½ÃÀåÀº ³ëÈÄÈµÈ Àü·Â ÀÎÇÁ¶óÀÇ ±Ù´ëÈ ¹× ½ÅÀç»ý ¿¡³ÊÁö¿øÀ» ±×¸®µå¿¡ ÅëÇÕÇϱâ À§ÇÑ ³ë·ÂÀ¸·Î 2024³â¿¡ 34¾ï ´Þ·¯¸¦ âÃâÇß½À´Ï´Ù. ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º Çâ»ó, ¿¡³ÊÁö ¼Õ½ÇÀÇ Àú°¨, Àü·Â ¼ö¿ä Áõ°¡¿¡ ´ëÇÑ ´ëÀÀÀÌ, °øÀÍ »ç¾÷°ú »ê¾÷ ºÎ¹®ÀÇ ½Ö¹æ¿¡¼ SVCÀÇ Ã¤¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²°ú ½º¸¶Æ® ±×¸®µå ±â¼úÀÇ °³¹ßÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Àμ¾Æ¼ºê´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÇ Àü°³¸¦ °¡¼ÓÈÇÏ¿© ½ÃÀåÀ» ´õ¿í ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.
¼¼°èÀÇ SVC(Static VAR Compensators) ½ÃÀå¿¡ Æ÷ÇÔµÈ ÁÖ¿ä ±â¾÷Àº RXPE, NISSIN ELECTRIC Co., Elco Power, GE Vernova, Sieyuan Electric, Wartsila, Merus Power, Delta Electronics, Mitsubishi Electric Power Products, Toshiba Energy Systems & Solutions Corporation, Komachine, Hitachi Energy, Nidec Industrial Solutions, JEMA Energy, American Superconductor, NR Electric Co., Clariant Power System, Siemens Energy, Eaton ¹× ABBÀÔ´Ï´Ù. SVC(Static VAR Compensators) ½ÃÀåÀÇ °¢ ȸ»ç´Â ±â¼ú Çõ½Å, Àü·«Àû ÆÄÆ®³Ê½Ê, Áö¸®Àû È®´ë¿¡ ÁÖ·ÂÇÏ¿© Á¸Àç°¨À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ƯÈ÷ Àç»ý¿¡³ÊÁö ÅëÇÕ ¹× ½º¸¶Æ®±×¸®µå ¿ëµµ¸¦ Áö¿øÇϱâ À§ÇØ Á¦Ç°ÀÇ È¿À²¼º, ÀûÀÀ¼º, µðÁöÅÐ ÅëÇÕÀ» °ÈÇÏ´Â ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ´Â ±â¾÷ÀÌ ¸¹½À´Ï´Ù. À¯Æ¿¸®Æ¼ ÇÁ·Î¹ÙÀÌ´õ³ª Á¤ºÎ¿ÍÀÇ Äݶ󺸷¹À̼ÇÀº, ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ È®º¸¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.
The Global Static VAR Compensator Market was valued at USD 28.1 billion in 2024 and is estimated to grow at a CAGR of 5.1% to reach USD 45.8 billion by 2034, fueled by the accelerating integration of renewable energy sources into modern power grids and the growing necessity for precise reactive power control. As the energy landscape undergoes rapid transformation, power grids are facing unprecedented demands for reliability, flexibility, and resilience. The shift toward decentralized energy systems, driven by solar, wind, and other renewable sources, is pushing grid operators to adopt advanced technologies capable of managing fluctuating energy inputs.
Static VAR Compensators (SVCs) have emerged as essential components for grid stability, offering dynamic reactive power support and real-time voltage regulation. Their deployment is no longer optional but a necessity, as grids modernize to accommodate clean energy mandates, urbanization, and rising electricity consumption worldwide. Investment in SVC technologies is also being propelled by the need to minimize energy losses, optimize transmission capacity, and ensure compliance with increasingly stringent grid codes across different regions. With governments and utilities prioritizing the upgrade of aging infrastructure and the development of smart grids, the Static VAR Compensator market is positioned for steady, long-term expansion.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $28.1 Billion |
Forecast Value | $45.8 Billion |
CAGR | 5.1% |
As solar, wind, and other intermittent energy sources continue to scale, maintaining voltage stability across transmission networks becomes increasingly complex. SVCs play a critical role in this environment-they dynamically regulate voltage fluctuations, absorb or generate reactive power as needed, and help avoid grid disturbances. Their ability to respond in real-time to load variations makes them vital for preventing power quality issues, reducing transmission losses, and enhancing the overall efficiency of the electrical infrastructure. As nations push forward with ambitious clean energy goals, the role of grid-supportive technologies like Static VAR Compensators becomes increasingly critical. These systems not only enable smoother integration of renewable power but also provide dynamic voltage regulation and reactive power support-functions that traditional grid infrastructure struggles to deliver at scale. The rapid growth of solar and wind farms introduces fluctuations in energy output, and without SVCs, these irregularities could lead to voltage instability, power outages, or damage to sensitive equipment.
The thyristor-based static VAR compensator segment is expected to grow at a CAGR of 5% through 2034. Demand for these systems remains robust due to the ongoing need for reactive power regulation and voltage stability across electrical grids. Utilities and industries are increasingly relying on SVCs to mitigate voltage fluctuations and address power factor issues, both of which are essential for maintaining a reliable power supply. Additionally, the rapid industrialization in emerging economies, leading to higher power consumption, is further driving the adoption of these compensators.
The utility-based static VAR compensator segment held a 42.1% share in 2024. Increased investments in upgrading and expanding power grid infrastructure are significantly boosting the demand for SVCs. Utilities are constantly seeking solutions to reduce energy costs, optimize energy consumption, and enhance grid performance. SVCs help achieve these goals by improving power quality, reducing energy losses, and mitigating penalties associated with low power factors.
The U.S. Static VAR Compensator Market generated USD 3.4 billion in 2024, driven by the country's efforts to modernize its aging power infrastructure and integrate renewable energy sources into the grid. The push for enhanced grid stability, reduced energy losses, and the ability to meet increasing electricity demand is fueling the adoption of SVCs across both utility and industrial sectors. Government incentives promoting energy efficiency and the development of smart grid technologies are accelerating the deployment of these systems, further boosting the market.
Key players included in the Global Static VAR Compensator Market are RXPE, NISSIN ELECTRIC Co., Elco Power, GE Vernova, Sieyuan Electric, Wartsila, Merus Power, Delta Electronics, Mitsubishi Electric Power Products, Toshiba Energy Systems & Solutions Corporation, Komachine, Hitachi Energy, Nidec Industrial Solutions, JEMA Energy, American Superconductor, NR Electric Co., Clariant Power System, Siemens Energy, Eaton, and ABB. Companies in the static VAR compensator market are focusing on innovation, strategic partnerships, and geographic expansion to strengthen their presence. Many are heavily investing in R&D to enhance product efficiency, adaptability, and digital integration, especially to support renewable energy integration and smart grid applications. Collaborations with utility providers and governments are helping to secure large-scale infrastructure projects.