½ÃÀ庸°í¼­
»óǰÄÚµå
1755307

¼¼°èÀÇ ¿¬·áÀüÁö UAV ½ÃÀå : ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)

Fuel Cell UAV Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ¿¬·áÀüÁö UAV ½ÃÀåÀº 2024³â¿¡´Â 18¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í ¿¬·áÀüÁö ±â¼ú¿¡ ´ëÇÑ Á¤ºÎ ¹× ±â°üÀÇ Áö¿ø Áõ°¡¿Í °¨½Ã ¹× Á¤Âû ½Ã½ºÅÛ ¼ö¿ä Áõ°¡¿¡ µû¶ó 2034³â¿¡´Â 68¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 14.4%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

±×·¯³ª ¹Ì±¹ ÇàÁ¤ºÎÀÇ Áß±¹»ê ¼öÀÔǰ¿¡ ´ëÇÑ °ü¼¼ µî ¹«¿ª Á¤Ã¥À¸·Î ÀÎÇØ ¼ö¼Ò ÀúÀå ½Ã½ºÅÛ, ¿¬·áÀüÁö ½ºÅÃ, º¹ÇÕ Àç·á µî ÁÖ¿ä ºÎǰÀÇ °¡°ÝÀÌ »ó½ÂÇϸ鼭 ½ÃÀåÀº ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ÀÌ·Î ÀÎÇØ Àü ¼¼°è °ø±Þ¸ÁÀÌ Áß´ÜµÇ°í °¡°Ý¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç ¿¬±¸ °³¹ßÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù.

¿¬·áÀüÁö UAV Market-IMG1

±×·³¿¡µµ ºÒ±¸ÇÏ°í ¿¬·áÀüÁö UAV ºÎ¹®Àº ÀÌ·¯ÇÑ UAV°¡ Á¦°øÇÏ´Â ¼ö¸¹Àº ÀåÁ¡ ´öºÐ¿¡ °è¼ÓÇØ¼­ »ó´çÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ ÀåÁ¡¿¡´Â ¿ì¼öÇÑ ³»±¸¼º, ³·Àº ¼ÒÀ½ ¹èÃâ, ¿¬ÀåµÈ ºñÇà ½Ã°£ÀÌ Æ÷ÇԵǸç, ÀÌ´Â ¹æÀ§, ȯ°æ ¸ð´ÏÅ͸µ, Àç³­ ´ëÀÀ µî Áß¿äÇÑ ÀÛÀü¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ¿¬·áÀüÁö UAV´Â Àå½Ã°£ µ¿¾È ÀÚÁÖ Àç±ÞÀ¯ ¾øÀÌ Á¶¿ëÈ÷ ¿î¿µÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ÀüÅëÀûÀÎ UAV¿Í Â÷º°È­µÇ´Â ÇÙ½É Æ¯Â¡À¸·Î ºÎ»óÇϸç, °¨½Ã, Á¤Âû, ±ä±Þ ÀÛÀü µî ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 18¾ï ´Þ·¯
¿¹Ãø ±Ý¾× 68¾ï ´Þ·¯
CAGR 14.4%

¿¬·áÀüÁö UAV ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó °íÁ¤ÀÍ UAV°¡ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ±â¿© ¿äÀÎÀ¸·Î ºÎ»óÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2034³â±îÁö 31¾ï¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÀÌ µå·ÐÀº Àå½Ã°£ ÀÓ¹«¿¡ ƯÈ÷ ¼±È£µÇ¸ç, ³ôÀº °ø±â¿ªÇÐÀû È¿À²¼º°ú ´ëÇü ¼ö¼Ò ¿¬·áÀüÁö ½Ã½ºÅÛÀ» žÀçÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ÇÙ½ÉÀÔ´Ï´Ù. ¿¬·á ¼Òºñ¸¦ ÁÙÀ̸鼭 Àå½Ã°£ ºñÇàÀÌ °¡´ÉÇÏ´Ù´Â Á¡Àº ±¹°æ °¨½Ã, ȯ°æ ¸ð´ÏÅ͸µ, ¹æ¾î ÀÛÀü µî ±¤¹üÀ§ÇÑ Áö¿ªÀ» Ä¿¹öÇØ¾ß ÇÏ´Â ºÐ¾ß¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µå·ÐÀ» Àå½Ã°£ ÀÓ¹«¿¡ ¹èÄ¡ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ƯÈ÷ ³»±¸¼ºÀÌ Áß¿äÇÑ ÀÛÀü¿¡¼­ Àü·«Àû ¿ìÀ§¸¦ Á¦°øÇÕ´Ï´Ù.

´Ü°Å¸® ¿¬·áÀüÁö UAV ºÎ¹®Àº 2034³â±îÁö ¿¬Æò±Õ 12.8%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ´Ü°Å¸® ¿¬·áÀüÁö UAV´Â ±âÁ¸ Á¦Ç°¿¡ ºñÇØ ºü¸¥ ¿¬·á º¸±Þ ´É·Â°ú ±ä ºñÇà ½Ã°£À¸·Î Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ UAV´Â »ê¾÷ °Ë»ç, °ø°ø ¾ÈÀü ¾÷¹« ¹× Á¦ÇÑµÈ ¿î¿µ ¿µ¿ª¿¡¼­ Áö¼ÓÀûÀÌ°í ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀÌ ÇÊ¿äÇÑ ±âŸ ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ UAV´Â ´õ¿í ´ÙÀç´Ù´ÉÇϰí È¿À²ÀûÀÌ µÇ¾î ´Ù¾çÇÑ »ê¾÷¿¡¼­ äÅÃÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.

µ¶ÀÏÀÇ ¿¬·áÀüÁö UAV ½ÃÀåÀº Żź¼ÒÈ­ ¹× Áö¼Ó °¡´É¼º¿¡ ÁßÁ¡À» µÐ ±¹°¡ Á¤Ã¥°ú ³ì»ö ±â¼úÀÇ Çõ½ÅÀ» Àå·ÁÇÏ´Â EU Áö¿ø ¿¬±¸ ÇÁ·Î±×·¥¿¡ ÈûÀÔ¾î 2034³â±îÁö ¿¬Æò±Õ 13.7%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ź¼Ò ¹èÃâ·® °¨Ãà°ú Áö¼Ó °¡´ÉÇÑ Ç×°ø ¼Ö·ç¼Ç ÃßÁø¿¡ ´ëÇÑ µ¶ÀÏÀÇ ³ë·ÂÀº ¼ö¼Ò ¿¬·á UAV ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹æÀ§ »ê¾÷ü, Ç×°ø ¿ìÁÖ ±â¾÷, Çмú ±â°ü °£ÀÇ Çù·ÂÀ» ÅëÇØ µ¶ÀÏÀº ģȯ°æ UAV ±â¼úÀÇ ¼±µÎ ÁÖÀÚ·Î ÀÚ¸®¸Å±èÇϸç ÷´Ü UAV ¿¬±¸ °³¹ßÀÇ Çãºê·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¿¬·áÀüÁö UAV »ê¾÷ÀÇ ÁÖ¿ä ½ÃÀå ±â¾÷À¸·Î´Â Hylium Industries, AeroVironment, FlightWave Aerospace, Doosan Mobility Innovation, ISS Group, Aurora Flight Sciences, MMCUAV, Elbit Systems°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ½ÃÀå ÁöÀ§¸¦ °­È­Çϱâ À§ÇØ ¿¬·áÀüÁö UAV ºÎ¹®ÀÇ ±â¾÷µéÀº UAVÀÇ È¿À²¼º°ú ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â ÃֽŠ¿¬·áÀüÁö ±â¼ú °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ¹Î°ü ÆÄÆ®³Ê½Ê°úÀÇ Çù·ÂÀ» ÅëÇØ ÀÚ±Ý ¹× ±â¼ú ÀÚ¿øÀ» È®º¸ÇÏ¿© °³¹ß ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. R&D ³ë·ÂÀ» ¹ßÀü½ÃÅ´À¸·Î½á, ÀÌµé ±â¾÷µéÀº Çõ½ÅÀ» ÃËÁøÇÏ°í ¼ö¼Ò ¿¬·á UAVÀÇ Ã¤Åÿ¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°èÀÇ Åº¼Ò Á߸³ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ßÀÇ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» °­Á¶ÇÏ¿©, ÀÚ»ç Á¦Ç°ÀÌ Ä£È¯°æ ±â¼ú¿¡ ´ëÇÑ Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çмú ±â°ü ¹× ¹æÀ§ °è¾à¾÷üµé°ú Çù·Â °ü°è¸¦ ±¸ÃàÇÔÀ¸·Î½á, ģȯ°æ UAV Çõ¸í¿¡¼­ ¼±µÎ À§Ä¡¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
  • Æ®·³ÇÁ Á¤±ÇÀÇ °ü¼¼ ºÐ¼®
    • ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¹«¿ª·®ÀÇ È¥¶õ
      • º¸º¹ Á¶Ä¡
    • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • °ø±ÞÃøÀÇ ¿µÇâ(¿øÀç·á)
        • ÁÖ¿ä ¿øÀç·áÀÇ °¡°Ý º¯µ¿
        • °ø±Þ¸Á À籸¼º
        • »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
        • ÃÖÁ¾ ½ÃÀå¿¡ÀÇ °¡°Ý Àü´Þ
        • ½ÃÀå Á¡À¯À² µ¿Çâ
        • ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
    • ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
    • Àü·«ÀûÀÎ ¾÷°è ´ëÀÀ
        • °ø±Þ¸Á À籸¼º
        • °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
        • Á¤Ã¥°ü¿©
    • Àü¸Á°ú ÇâÈÄ °ËÅä »çÇ×
  • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • °¨½Ã ¹× Á¤Âû ÀÀ¿ë ºÐ¾ßÀÇ ¼ö¿ä Áõ°¡
      • ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ÃßÁø ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
      • »ó¾÷¿ë ¹× »ê¾÷¿ë ÀÀ¿ë ºÐ¾ß¿¡¼­ÀÇ Ã¤Åà Áõ°¡
      • Á¤ºÎ Áö¿ø ¹× ±º»ç Çö´ëÈ­ ÇÁ·Î±×·¥
      • ¿¬·áÀüÁö ±â¼ú¿¡ ´ëÇÑ Á¤ºÎ ¹× ±â°üÀÇ Áö¿ø Áõ°¡
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
      • ¿¬·áÀüÁö ½Ã½ºÅÛÀÇ °íºñ¿ë
      • ±ÔÁ¦ ¹× Ç×°ø °ø°£ Á¦ÇÑ
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • ±ÔÁ¦ »óȲ
  • ±â¼úÀÇ »óȲ
  • Àå·¡ ½ÃÀå µ¿Çâ
  • °¸ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼Ò°³
  • ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ °æÀï ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« ´ë½Ãº¸µå

Á¦5Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : UAV À¯Çüº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • °íÁ¤ÀÍ ¹«ÀÎ Ç×°ø±â
  • ȸÀüÀÍ ¹«ÀÎ Ç×°ø±â
  • ÇÏÀ̺긮µå VTOL ¹«ÀÎ Ç×°ø±â

Á¦6Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¹üÀ§º°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ´Ü°Å¸®(50km ¹Ì¸¸)
  • Á߰Ÿ®(50-200km)
  • Àå°Å¸®(200km ÀÌ»ó)

Á¦7Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ÃÖÁ¾ ¿ëµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ±º»ç ¹× ¹æÀ§
  • »ó¾÷ ¹× »ê¾÷
    • ¹è¼Û ¹× ¹°·ù
    • Ç×°ø °¨½Ã ¹× ¸ÅÇÎ
    • ³ó¾à »ìÆ÷
    • ȯ°æ ¸ð´ÏÅ͸µ
    • ±âŸ
  • ¹Î°£/Á¤ºÎ

Á¦8Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • AeroVironment
  • Aurora Flight Sciences
  • Doosan Mobility Innovation
  • Elbit Systems
  • FlightWave Aerospace
  • Hylium Industries
  • ISS Group
  • JOUAV
  • MMCUAV
HBR 25.07.02

The Global Fuel Cell UAV Market was valued at USD 1.8 billion in 2024 and is estimated to grow at a CAGR of 14.4% to reach USD 6.8 billion by 2034, driven by increasing government and institutional support for fuel cell technologies, as well as rising demand for surveillance and reconnaissance systems. However, the market faced challenges due to the U.S. administration's trade policies, including tariffs on Chinese imports, which led to higher costs for key components such as hydrogen storage systems, fuel cell stacks, and composite materials. This disrupted global supply chains, impacted pricing, and slowed research and development efforts.

Fuel Cell UAV Market - IMG1

Despite this, the fuel cell UAV sector continues to experience significant growth, driven by the numerous advantages these UAVs offer. These include superior endurance, reduced noise emissions, and extended flight durations, making them particularly suitable for critical operations, including defense, environmental monitoring, and disaster response. Their ability to operate silently for longer periods without needing frequent refueling is becoming a key feature that differentiates fuel cell UAVs from their traditional counterparts, positioning them as essential tools for surveillance, reconnaissance, and emergency operations.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.8 Billion
Forecast Value$6.8 Billion
CAGR14.4%

As fuel cell UAV technology advances, fixed-wing UAVs are anticipated to become a major contributor to market growth, projected to reach USD 3.1 billion by 2034. These UAVs are particularly favored for long-duration missions, where high aerodynamic efficiency and the capacity to carry larger hydrogen fuel cell systems are crucial. Their ability to maintain extended flight times without compromising on fuel consumption is making them indispensable in applications like border surveillance, environmental monitoring, and defense operations, where coverage over vast geographic areas is necessary. The ability to deploy these UAVs for longer missions provides strategic advantages, particularly in operations where endurance is critical.

The short-range fuel cell UAV segment is projected to grow at a CAGR of 12.8% through 2034, short-range fuel cell UAVs are gaining popularity due to their quick refueling capability and longer flight times compared to their traditional counterparts. These UAVs are ideal for industrial inspections, public safety tasks, and other applications that require sustained, reliable performance in confined operational areas. As technology improves, these UAVs become more versatile and efficient, driving their adoption in various industries.

Germany Fuel Cell UAV Market is expected to grow at a CAGR of 13.7% through 2034 fueled by national policies focused on decarbonization and sustainability, along with EU-backed research programs that encourage innovation in green technologies. Germany's commitment to reducing carbon emissions and promoting sustainable aviation solutions drives investments in hydrogen-powered UAV technologies. Furthermore, collaborations between defense contractors, aerospace companies, and academic institutions are positioning the country as a leader in green UAV technologies, making it a hub for advanced UAV research and development.

Key market players in the Global Fuel Cell UAV Industry include Hylium Industries, AeroVironment, FlightWave Aerospace, Doosan Mobility Innovation, ISS Group, Aurora Flight Sciences, MMCUAV, and Elbit Systems. To strengthen their market position, companies in the fuel cell UAV sector focus on developing cutting-edge fuel cell technology that enhances the efficiency and endurance of UAVs. Collaborating with governments and public-private partnerships allows them to access funding and technical resources, reducing development costs. By advancing R&D efforts, these companies are driving innovation and contributing to the adoption of hydrogen-powered UAVs. They also emphasize sustainable solutions in aerospace and defense, in line with global carbon neutrality goals, ensuring that their products meet the growing demand for eco-friendly technologies. Additionally, forging collaborations with academic institutions and defense contractors helps them remain at the forefront of the green UAV revolution.

Table of Contents

Chapter 1 Methodology and scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive summary

  • 2.1 Industry 3600 synopsis

Chapter 3 Industry insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Trump administration tariffs analysis
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
        • 3.2.4.1.1 Supply chain reconfiguration
        • 3.2.4.1.2 Pricing and product strategies
        • 3.2.4.1.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Growing demand for surveillance and reconnaissance applications
      • 3.3.1.2 Rising investments in clean and sustainable propulsion technologies
      • 3.3.1.3 Increasing adoption in commercial and industrial applications
      • 3.3.1.4 Government support and military modernization programs
      • 3.3.1.5 Rising government and institutional support for fuel cell technology
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High cost of fuel cell systems
      • 3.3.2.2 Regulatory and airspace restrictions
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
  • 3.6 Technology landscape
  • 3.7 Future market trends
  • 3.8 Gap analysis
  • 3.9 Porter's analysis
  • 3.10 Pestel analysis

Chapter 4 Competitive landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates & Forecast, By UAV Type, 2021 - 2034 (USD Million & Units)

  • 5.1 Key trends
  • 5.2 Fixed wing UAVs
  • 5.3 Rotary wing UAVs
  • 5.4 Hybrid VTOL UAVs

Chapter 6 Market Estimates & Forecast, By Range, 2021 - 2034 (USD Million & Units)

  • 6.1 Key trends
  • 6.2 Short range (< 50 km)
  • 6.3 Medium range (50-200 km)
  • 6.4 Long range (>200 km)

Chapter 7 Market Estimates & Forecast, By End Use, 2021 - 2034 (USD Million & Units)

  • 7.1 Key trends
  • 7.2 Military & defense
  • 7.3 Commercial & industrial
    • 7.3.1 Delivery and logistics
    • 7.3.2 Aerial surveillance and mapping
    • 7.3.3 Pesticide spraying
    • 7.3.4 Environmental monitoring
    • 7.3.5 Others
  • 7.4 Civil/government

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Million & Units)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 AeroVironment
  • 9.2 Aurora Flight Sciences
  • 9.3 Doosan Mobility Innovation
  • 9.4 Elbit Systems
  • 9.5 FlightWave Aerospace
  • 9.6 Hylium Industries
  • 9.7 ISS Group
  • 9.8 JOUAV
  • 9.9 MMCUAV
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦