![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1544061
¼¼°èÀÇ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåData Discovery |
¼¼°èÀÇ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀº 2030³â±îÁö 277¾ï ´Þ·¯¿¡ µµ´Þ
2023³â¿¡ 101¾ï ´Þ·¯·Î ÃßÁ¤µÈ ¼¼°èÀÇ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀº 2023-2030³â CAGR 15.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 277¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ BFSI ¾÷°è´Â CAGR 18.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 102¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. IT & Åë½Å ¾÷°è ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 16.6%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 27¾ï ´Þ·¯, Áß±¹Àº CAGR 14.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ÃßÁ¤¡¤¿¹Ãø
¹Ì±¹ÀÇ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀº 2023³â¿¡ 27¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 41¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³â CAGRÀº 14.2%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 14.5%¿Í 12.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 10.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®¶õ ¹«¾ùÀ̸ç, ¿Ö ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º¿¡ ÇʼöÀûÀΰ¡?
µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®´Â ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¿¡ ÇʼöÀûÀÎ ÇÁ·Î¼¼½º·Î, µ¥ÀÌÅ͸¦ ¼öÁý, Á¤¸®, ºÐ¼®ÇÏ¿© ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â °úÁ¤ÀÔ´Ï´Ù. ÀÌ ÇÁ·Î¼¼½º¸¦ ÅëÇØ ±â¾÷Àº ¿ø½Ã µ¥ÀÌÅÍ¿¡¼ ÆÐÅÏ, Ãß¼¼, ÀÌ»ó ¡Èĸ¦ ¹ß°ßÇϰí À̸¦ ±×·¡ÇÁ, È÷Æ®¸Ê, ´ë½Ãº¸µå¿Í °°Àº ½Ã°¢Àû Ç¥ÇöÀ¸·Î º¯È¯ÇÏ¿© ÀÌÇØÇϱ⠽±°í ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ºñÁî´Ï½º¿¡¼´Â ¸ÅÀÏ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ¹Ç·Î ÀÌ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î Ž»öÇÏ°í °ü·Ã Á¤º¸¸¦ ã¾Æ³»´Â ´É·ÂÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÅøÀº ¿¹Ãø ºÐ¼® ¹× ¸Ó½Å·¯´×°ú °°Àº °í±Þ ºÐ¼®À» »ç¿ëÇÏ¿© ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ¼±º°ÇÏ°í ±âÁ¸ ºÐ¼® ¹æ¹ýÀ¸·Î´Â ¹ß°ßÇÏÁö ¸øÇß´ø Áß¿äÇÑ ÆÐÅÏÀ» ã¾Æ³À´Ï´Ù. À̸¦ ÅëÇØ ÀÇ»ç°áÁ¤ ÇÁ·Î¼¼½º¸¦ °ÈÇÒ »Ó¸¸ ¾Æ´Ï¶ó ´Ù¾çÇÑ ¾÷¹«¸¦ °£¼ÒÈÇÏ¿© È¿À²¼ºÀ» ³ôÀ̰í, ºñ¿ëÀ» Àý°¨Çϸç, Àü¹ÝÀûÀÎ ¼º°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Ãֽбâ¼úÀÌ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÇÁ·Î¼¼½º¸¦ ¾î¶»°Ô °ÈÇϴ°¡?
Ãֽбâ¼úÀº µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÇÁ·Î¼¼½ºÀÇ È¿À²¼º°ú È¿°ú¼ºÀ» Å©°Ô Çâ»ó½Ãŵ´Ï´Ù. ºòµ¥ÀÌÅÍ ±â¼úÀÇ µîÀåÀ¸·Î ±â¾÷Àº ±× ¾î´À ¶§º¸´Ù ¸¹Àº ¾çÀÇ µ¥ÀÌÅ͸¦ ´Ù·ê ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, AI ¹× ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÌ Å¾ÀçµÈ ÅøÀº º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼® ÀÛ¾÷À» ÀÚµ¿ÈÇÏ¿© ½Ã°£°ú ³ë·ÂÀ» ÁÙÀÌ¸é¼ Á¤È®µµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº »õ·Î¿î µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ÇнÀ°ú ÀûÀÀÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ½Ã°£ÀÌ Áö³²¿¡ µû¶ó µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÇÁ·Î¼¼½º¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ÄÄÇ»ÆÃÀº ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ Á¢±ÙÇÒ ¼ö ÀÖ´Â º¸´Ù È®Àå °¡´ÉÇϰí À¯¿¬ÇÑ µ¥ÀÌÅÍ °Ë»ö ¼Ö·ç¼ÇÀ» ÃËÁøÇÏ¿© °í±Þ ºÐ¼®À» º¸´Ù ¹ÎÁÖÀûÀ¸·Î Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Çß½À´Ï´Ù. ÀÌ·¯ÇÑ È®À强Àº µ¥ÀÌÅÍ »ý¼ºÀÌ ±âÇϱ޼öÀûÀ¸·Î Áõ°¡ÇÏ°í ´Ù¾çÇÑ »ê¾÷À¸·Î È®»êµÇ´Â ½Ã´ë¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.
È¿°úÀûÀÎ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®¸¦ µµÀÔÇÏ´Â µ¥ ÀÖÀ¸¸ç, Á¶Á÷ÀÌ Á÷¸éÇϰí ÀÖ´Â ¾î·Á¿òÀº ¹«¾ùÀΰ¡?
µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®¸¦ ÃËÁøÇÏ´Â ±â¼úÀÇ ¹ßÀü¿¡µµ ºÒ±¸Çϰí, Á¶Á÷Àº ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» È¿°úÀûÀ¸·Î µµÀÔÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¿©ÀüÈ÷ Å« ¾î·Á¿ò¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä °úÁ¦ Áß Çϳª´Â µ¥ÀÌÅÍ Ç°Áú°ü¸®ÀÔ´Ï´Ù. µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®´Â ÀÔ·Â µ¥ÀÌÅÍÀÇ Ç°Áú¿¡ Å©°Ô ÀÇÁ¸ÇϹǷΠµ¥ÀÌÅÍÀÇ Ã»°á¼º, ¹«°á¼º, Á¤È®¼ºÀ» º¸ÀåÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ °úÁ¦´Â µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÅøÀ» ±âÁ¸ IT ÀÎÇÁ¶ó¿Í ÅëÇÕÇÏ¿© ȣȯ¼º ¹®Á¦¸¦ ±Øº¹ÇØ¾ß ÇÏ´Â °ÍÀÔ´Ï´Ù. ¶ÇÇÑ ¸ðµç Á÷¿øÀÌ ÀÌ·¯ÇÑ °í±Þ ÅøÀ» µ¿ÀÏÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖ´Â °ÍÀº ¾Æ´Ï±â ¶§¹®¿¡ ±â¼ú °ÝÂ÷(Skill Gap)¶ó´Â ¹®Á¦µµ ÀÖ½À´Ï´Ù. Á¶Á÷Àº Á÷¿øµéÀÌ ÀÌ·¯ÇÑ ±â¼úÀ» ÃæºÐÈ÷ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ±³À° ¹× ¿ª·® °³¹ß¿¡ ÅõÀÚÇØ¾ß ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¸¶Áö¸·À¸·Î µ¥ÀÌÅÍ À¯Ãâ ¹× »çÀ̹ö º¸¾È À§ÇùÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µð½ºÄ¿¹ö¸® ÇÁ·Î¼¼½º¿¡ »ç¿ëµÇ´Â µ¥ÀÌÅÍÀÇ º¸¾ÈÀ» º¸ÀåÇÏ´Â °ÍÀÌ ´õ¿í Áß¿äÇÏ°í ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº?
µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ¿©·¯ °¡Áö°¡ ÀÖÁö¸¸, ±× Áß¿¡¼µµ ±â¾÷ÀÇ µ¥ÀÌÅÍ »ý¼º·® Áõ°¡¿Í µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ´ÏÁî Áõ°¡°¡ °¡Àå Å« ¿äÀÎÀ¸·Î ²ÅÈü´Ï´Ù. ´Ù¾çÇÑ ºÐ¾ßÀÇ ±â¾÷ÀÌ ¾÷¹«ÀÇ µðÁöÅÐȸ¦ ÃßÁøÇÏ¸é¼ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ°í °¡Ä¡ ÀÖ´Â ÀλçÀÌÆ®À» ÃßÃâÇÒ ¼ö ÀÖ´Â °·ÂÇÑ ºÐ¼® Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºñÀü¹®°¡µéÀÌ ITÀÇ °³ÀÔ ¾øÀ̵µ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ´Â ¼¿ÇÁ ¼ºñ½º ºÐ¼® Ç÷§ÆûÀ¸·ÎÀÇ Àüȯµµ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº Á¶Á÷³» ´õ ¸¹Àº »ç¿ëÀÚ°¡ µ¥ÀÌÅÍ¿¡ Á÷Á¢ Âü¿©ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀÌÇØµµ°¡ ³ôÀº ¹®È¸¦ Á¶¼ºÇϰí, µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÅøÀÇ ±â´ÉÀ» Çâ»ó½ÃÄÑ ´õ¿í Á¤È®Çϰí È¿À²ÀûÀÎ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÅøÀÇ ±â´ÉÀ» °È½Ã۰í ÀÖ½À´Ï´Ù. ±Þº¯ÇÏ´Â ½ÃÀå¿¡¼ °æÀï·ÂÀ» À¯ÁöÇÏ°í ¹ÎøÇÏ°Ô ´ëÀÀÇØ¾ß ÇÏ´Â °æÁ¦Àû ¿äÀεµ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ±â¼ú µµÀÔ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû, °æÁ¦Àû, Á¶Á÷Àû ¿ªÇÐÀÇ °áÇÕÀº µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀÇ °ß°íÇÑ ¼ºÀåÀ» º¸ÀåÇÏ°í ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ¹× ºÐ¼®ÀÇ ¹Ì·¡¿¡ ÀÖÀ¸¸ç, µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °Á¶Çϰí ÀÖ½À´Ï´Ù.
Global Data Discovery Market to Reach US$27.7 Billion by 2030
The global market for Data Discovery estimated at US$10.1 Billion in the year 2023, is expected to reach US$27.7 Billion by 2030, growing at a CAGR of 15.6% over the analysis period 2023-2030. BFSI Vertical, one of the segments analyzed in the report, is expected to record a 18.5% CAGR and reach US$10.2 Billion by the end of the analysis period. Growth in the IT & Telecom Vertical segment is estimated at 16.6% CAGR over the analysis period.
The U.S. Market is Estimated at US$2.7 Billion While China is Forecast to Grow at 14.2% CAGR
The Data Discovery market in the U.S. is estimated at US$2.7 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$4.1 Billion by the year 2030 trailing a CAGR of 14.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.5% and 12.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.7% CAGR.
Global Data Discovery Market - Key Trends and Drivers Summarized
What Is Data Discovery, and Why Is It Integral to Business Intelligence?
Data discovery is a process integral to business intelligence that involves collecting, cleaning, and analyzing data to generate actionable insights. This process enables organizations to unearth patterns, trends, and anomalies from raw data, transforming them into visual representations like graphs, heat maps, and dashboards for easier comprehension and decision-making. As businesses generate vast amounts of data daily, the ability to efficiently navigate through this data to find relevant information is crucial. Data discovery tools use advanced analytics, including predictive analytics and machine learning, to sift through large datasets and identify significant patterns that might not be evident through traditional analysis methods. This not only enhances the decision-making process but also streamlines various business operations, leading to increased efficiency, reduced costs, and improved overall performance.
How Are Modern Technologies Enhancing Data Discovery Processes?
Modern technologies significantly enhance the efficiency and effectiveness of data discovery processes. With the advent of big data technologies, businesses can handle larger volumes of data than ever before. Tools equipped with AI and machine learning algorithms can automate complex data analysis tasks, reducing the time and effort required while increasing accuracy. These technologies allow for the continuous learning and adaptation of systems based on new data, thereby refining the data discovery process over time. Furthermore, cloud computing has facilitated more scalable and flexible data discovery solutions that businesses of all sizes can access, enabling a more democratic use of advanced analytics. This scalability is particularly crucial in an era where data generation is exponential and widespread across various industries.
What Challenges Do Organizations Face in Implementing Effective Data Discovery?
Despite the advancements in technologies facilitating data discovery, organizations still face significant challenges in implementing these solutions effectively. One of the primary challenges is data quality management. As data discovery depends heavily on the input data's quality, ensuring the cleanliness, completeness, and accuracy of this data is paramount. Another challenge is integrating data discovery tools with existing IT infrastructure, which often involves overcoming compatibility issues and can require substantial initial and ongoing investment. Additionally, there is the challenge of skill gaps, as not all employees are equally adept at utilizing these sophisticated tools. Organizations must often invest in training and development to ensure their staff can leverage these technologies fully. Lastly, with the increase in data breaches and cybersecurity threats, ensuring the security of data used in discovery processes is becoming more crucial and challenging.
What Drives the Growth in the Data Discovery Market?
The growth in the data discovery market is driven by several factors, crucially the increasing volume of data generated by businesses and the growing need for data-driven decision-making. As companies across various sectors continue to digitalize their operations, the demand for powerful analytics tools that can parse through large datasets and extract valuable insights becomes more pronounced. Additionally, the shift towards self-service analytics platforms, where non-expert users can generate insights without the need for IT intervention, is also propelling the market forward. These platforms empower more users within an organization to engage with data directly, fostering a more data-literate culture and driving demand for data discovery solutions. Moreover, the continuous advancements in artificial intelligence and machine learning are enhancing the capabilities of data discovery tools, making them more accurate and efficient. Economic factors, such as the need to remain competitive and agile in rapidly changing markets, also play a critical role in adopting data discovery technologies. Combined, these technological, economic, and organizational dynamics ensure robust growth in the data discovery market, highlighting its essential role in the future of business intelligence and analytics.
Select Competitors (Total 46 Featured) -