½ÃÀ庸°í¼
»óÇ°ÄÚµå
1559759
¼¼°èÀÇ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåRobotics System Integration |
¼¼°èÀÇ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀº 2030³â±îÁö 168¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2023³â¿¡ 94¾ï ´Þ·¯·Î Æò°¡µÈ ¼¼°èÀÇ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö CAGR 8.5%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 168¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚÀç°ü¸® ¿ëµµ´Â CAGR 9.2%·Î ¼ºÀåÀ» Áö¼ÓÇÏ°í, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§±îÁö 85¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ëÁ¢ ¹× ³³¶« ÀÀ¿ë ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.0%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 26¾ï ´Þ·¯, Áß±¹Àº CAGR 7.8%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀº 2023³â 26¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2023³âºÎÅÍ 2030³â±îÁö ºÐ¼® ±â°£¿¡ CAGR 7.8%·Î ¼ºÀåÀ» Áö¼ÓÇÒ Àü¸ÁÀ̸ç, 2030³â±îÁö 26¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.6%¿Í 7.1%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 6.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀå µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à
·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕÀ̶õ ¹«¾ùÀÌ¸ç ¿Ö ÀÚµ¿È¿¡ ÇʼöÀûÀΰ¡¿ä? ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ¿¡´Â Á¶Á÷ÀÇ ±âÁ¸ ÇÁ·Î¼¼½º³ª ÀÎÇÁ¶ó ³»¿¡¼ ¿øÈ°ÇÏ°Ô ÀÛµ¿Çϵµ·Ï ·Îº¿ ½Ã½ºÅÛÀ» ¼³°è, ÇÁ·Î±×·¡¹Ö, ¼³Ä¡ÇÏ´Â ÇÁ·Î¼¼½º°¡ Æ÷ÇԵ˴ϴÙ. ½Ã½ºÅÛ ÅëÇÕÀÚ´Â ·Îº¿, ¼¾¼, ÄÁÆ®·Ñ·¯, ¼ÒÇÁÆ®¿þ¾î ¹× ±âŸ ÄÄÆ÷³ÍÆ®°¡ È¿À²ÀûÀÌ°í È¿°úÀûÀ¸·Î Çù·ÂÇÏ¿© ¿øÇÏ´Â °á°ú¸¦ ¾ò´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÚµ¿Â÷, ÀÏ·ºÆ®·Î´Ð½º, Á¦¾à, ¹°·ù µî »ý»ê¼º, Ç°Áú, À¯¿¬¼ºÀ» Çâ»ó½ÃÅ°±â À§ÇØ º¹ÀâÇÑ ÀÚµ¿È ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÑ ¾÷°è¿¡¼´Â ÀÌ·¯ÇÑ ÅëÇÕÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕÀº ·Îº¿ ¼Ö·ç¼ÇÀ» ƯÁ¤ ºñÁî´Ï½º ¿ä±¸¿¡ ¸Â°Ô ¸ÂÃãÈÇÔÀ¸·Î½á ±â¾÷ÀÌ ´õ ³ôÀº È¿À²À» ´Þ¼ºÇÏ°í, ¿À·ù¸¦ ÁÙÀÌ°í, ¸®¼Ò½º È°¿ëÀ» ÃÖÀûÈÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ·Îº¸Æ½½º¿Í ÀÚµ¿ÈÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó Àü¹®ÀûÀÎ ½Ã½ºÅÛ ÅëÇÕ ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
±â¼ú ¹ßÀüÀº ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´Â°¡?
±â¼úÀÇ ¹ßÀüÀº ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕÀ» ´õ¿í È¿À²ÀûÀ¸·Î, È®Àå °¡´ÉÇÏ°í, ÀûÀÀÀûÀ¸·Î Çâ»ó½ÃÅ°°í, »ó´çÇÑ °³¼±À» ÃËÁøÇÕ´Ï´Ù. AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº ·Îº¿ ½Ã½ºÅÛÀÇ º¸´Ù °í±Þ ÇÁ·Î±×·¡¹Ö ¹× Á¦¾î¸¦ °¡´ÉÇÏ°Ô Çϸç, º¹ÀâÇÑ ÀÛ¾÷À» º¸´Ù Á¤È®ÇÏ°í ÀûÀÀ¼º ÀÖ°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ROS(Robot Operating System) ¹× OPC UA(Open Platform Communications Unified Architecture)¿Í °°Àº Ç¥ÁØÈµÈ Åë½Å ÇÁ·ÎÅäÄÝÀÇ °³¹ßÀº ¼·Î ´Ù¸¥ ·Îº¿ Ç÷§Æû°ú ÀÚµ¿È ½Ã½ºÅÛ °£ÀÇ »óÈ£ ¿î¿ë¼ºÀ» Çâ»ó½ÃÄÑ ÅëÇÕ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇÕ´Ï´Ù. µðÁöÅÐ Æ®À© ±â¼ú°ú ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀÇ Çõ½ÅÀ» ÅëÇØ ÅëÇÕÀÚ´Â ¹°¸®Àû ¹èÄ¡ ÀÌÀü¿¡ °¡»óÀ¸·Î ·Îº¿ ½Ã½ºÅÛÀ» ¼³°è, Å×½ºÆ® ¹× ÃÖÀûÈÇÒ ¼ö ÀÖ¾î µµÀÔ¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀÌ Àý°¨µË´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ±â¹Ý Ç÷§Æû°ú IoT Áö¿ø ÀåÄ¡ÀÇ ÃâÇöÀ¸·Î ¿¬°á¼º, ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®ÀÌ Çâ»óµÇ°í ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕÀÌ °¡´ÉÇÕ´Ï´Ù.
·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀå¿¡ Á¸ÀçÇÏ´Â °úÁ¦ ¹× ±âȸ¶õ?
·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀº Ãʱ⠺ñ¿ë »ó½Â, ±â¼úÀû º¹À⼺, ¼÷·ÃÀÚÀÇ Çʿ伺 µî ¿©·¯ °úÁ¦¿¡ Á÷¸éÇÏ°í ÀÖ½À´Ï´Ù. ÷´Ü ·Îº¸Æ½½º¿Í ÀÚµ¿È ½Ã½ºÅÛÀÇ ÅëÇÕ¿¡´Â Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× Àü¹® Áö½Ä¿¡ ´ëÇÑ ¾öû³ ÅõÀÚ°¡ ÇÊ¿äÇϸç À庮ÀÌ µÇ´Â Á¶Á÷µµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ·Îº¿ Ç÷§Æû, ¼¾¼ ¹× ¼ÒÇÁÆ®¿þ¾î¸¦ ±âÁ¸ ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ´Â º¹À⼺µµ ±â¼úÀûÀ¸·Î ¾ö°ÝÇÏ°í ½Ã°£ÀÌ ¿À·¡ °É¸± ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ °úÁ¦´Â ¼ºÀå°ú Çõ½ÅÀ» À§ÇÑ Å« ±âȸ°¡ µË´Ï´Ù. ´Ù¾çÇÑ »ê¾÷¿¡¼ ·Îº¿ °øÇаú ÀÚµ¿ÈÀÇ µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ´Â °ÍÀÌ Àü¹®°¡¿¡ ÀÇÇÑ ½Ã½ºÅÛ ÅëÇÕ ¼ºñ½º ¼ö¿ä¸¦ ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ¸Å´ºÆÑ󸵰ú µðÁöÅÐ Àüȯ À̴ϼÅƼºêÀÇ È®´ë´Â À¯¿¬ÇÏ°í ¸ÂÃãÈµÈ ¿ÀÅä¸ÞÀÌ¼Ç ¼Ö·ç¼ÇÀÇ µ¿Çâ°ú ÇÔ²² ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀå ÀáÀç·ÂÀ» ´õ¿í ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ º¸´Ù »ç¿ëÇϱ⠽±°í ¸ðµâȵǰí È®Àå °¡´ÉÇÑ ·Îº¿ ½Ã½ºÅÛÀÇ °³¹ßÀº ÅëÇÕÀÚ°¡ ºÎ°¡°¡Ä¡ ¼ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±âȸ¸¦ âÃâÇÏ°í ÀÖ½À´Ï´Ù.
·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀÇ ¼ºÀåÀ» À̲ø°í ÀÖ´Â ¿äÀÎÀ̶õ?
·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀÇ ¼ºÀåÀº ÀÚµ¿Â÷, ÀÏ·ºÆ®·Î´Ð½º, Á¦¾à, ¹°·ù µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¿øÈ°ÇÏ°í È¿À²ÀûÀÎ ÀÚµ¿È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ ¿äÀε鿡 ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù. AI, ¸Ó½Å·¯´×, µðÁöÅÐ Æ®À© ±â¼ú, Ç¥ÁØÈµÈ Åë½Å ÇÁ·ÎÅäÄÝ µîÀÇ ±â¼úÀû Áøº¸·Î ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕÀÇ È¿À²¼º, È®À强, À¯¿¬¼ºÀÌ Çâ»óµÇ¾î ä¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ¸Å´ºÆÑó¸µ, µðÁöÅÐÈ, Ä¿½ºÅ͸¶ÀÌÁîµÈ ÀÚµ¿È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡°¡ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇコÄɾî, ³ó¾÷, ¼Ò¸Å¾÷ µî ·Îº¿ ¼Ö·ç¼ÇÀÌ º¸±ÞµÇ°í ÀÖ´Â ºÐ¾ß¿¡¼ÀÇ ¿ëµµ È®´ëµµ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ¼ºñ½º ¼ö¿ä¸¦ ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. ºñ¿ë Àý°¨, »ý»ê¼º Çâ»ó ¹× ¿î¿µ À¯¿¬¼º °È°¡ ·Îº¸Æ½½º ½Ã½ºÅÛ ÅëÇÕ ½ÃÀåÀ» ´õ¿í ¹ßÀü½ÃÅ°°í ÀÖ½À´Ï´Ù.
Global Robotics System Integration Market to Reach US$16.8 Billion by 2030
The global market for Robotics System Integration estimated at US$9.4 Billion in the year 2023, is expected to reach US$16.8 Billion by 2030, growing at a CAGR of 8.5% over the analysis period 2023-2030. Material Handling Application, one of the segments analyzed in the report, is expected to record a 9.2% CAGR and reach US$8.5 Billion by the end of the analysis period. Growth in the Welding & Soldering Application segment is estimated at 8.0% CAGR over the analysis period.
The U.S. Market is Estimated at US$2.6 Billion While China is Forecast to Grow at 7.8% CAGR
The Robotics System Integration market in the U.S. is estimated at US$2.6 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.6 Billion by the year 2030 trailing a CAGR of 7.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.6% and 7.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.4% CAGR.
Global Robotics System Integration Market - Key Trends and Drivers Summarized
What Is Robotics System Integration and Why Is It Critical for Automation?
Robotics System Integration involves the process of designing, programming, and installing robotic systems to work seamlessly within an organization's existing processes and infrastructure. System integrators play a vital role in ensuring that robots, sensors, controllers, software, and other components function together efficiently and effectively to achieve desired outcomes. This integration is crucial in industries such as automotive, electronics, pharmaceuticals, and logistics, where complex automation solutions are required to improve productivity, quality, and flexibility. By tailoring robotic solutions to specific operational needs, robotics system integration helps businesses achieve higher efficiency, reduce errors, and optimize resource utilization. As the adoption of robotics and automation continues to grow, the demand for expert system integration services is increasing.
How Are Technological Advancements Influencing Robotics System Integration?
Technological advancements are driving significant improvements in robotics system integration, making it more efficient, scalable, and adaptive. The integration of AI and machine learning is enabling more sophisticated programming and control of robotic systems, allowing them to perform complex tasks with greater precision and adaptability. The development of standardized communication protocols, such as ROS (Robot Operating System) and OPC UA (Open Platform Communications Unified Architecture), is enhancing interoperability among different robotic platforms and automation systems, simplifying integration processes. Innovations in digital twin technology and simulation tools are enabling integrators to design, test, and optimize robotic systems virtually before physical deployment, reducing implementation time and costs. Additionally, the rise of cloud-based platforms and IoT-enabled devices is enhancing connectivity, remote monitoring, and real-time data analytics, further streamlining robotics system integration.
What Challenges and Opportunities Exist in the Robotics System Integration Market?
The robotics system integration market faces several challenges, including high initial costs, technical complexities, and the need for skilled personnel. The integration of advanced robotics and automation systems requires significant investment in hardware, software, and expertise, which can be a barrier for some organizations. The complexity of integrating different robotic platforms, sensors, and software into existing processes can also be technically demanding and time-consuming. However, these challenges present substantial opportunities for growth and innovation. The increasing adoption of robotics and automation across various industries is driving the demand for expert system integration services. The expansion of smart manufacturing and digital transformation initiatives, along with the growing trend of flexible and customized automation solutions, is further boosting the market potential for robotics system integration. Moreover, the development of more user-friendly, modular, and scalable robotic systems is creating new opportunities for integrators to deliver value-added services.
What Factors Are Driving the Growth of the Robotics System Integration Market?
The growth in the Robotics System Integration market is driven by several factors, including the rising demand for seamless and efficient automation solutions across various industries such as automotive, electronics, pharmaceuticals, and logistics. Technological advancements in AI, machine learning, digital twin technology, and standardized communication protocols are enhancing the efficiency, scalability, and flexibility of robotics system integration, driving their adoption. The increasing focus on smart manufacturing, digitalization, and the need for customized automation solutions is also contributing to market growth. Additionally, the expansion of applications in sectors such as healthcare, agriculture, and retail, where robotic solutions are becoming more prevalent, is boosting the demand for robotics system integration services. The emphasis on reducing costs, improving productivity, and enhancing operational flexibility is further propelling the robotics system integration market forward.
Select Competitors (Total 38 Featured) -