½ÃÀ庸°í¼­
»óǰÄÚµå
1565138

¼¼°èÀÇ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀå

Grid-Scale Battery

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Industry Analysts, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 247 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 218¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 54¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ¼¼°è ½ÃÀåÀº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 22.1% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 218¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸®Æ¬ À̿ ¹èÅ͸®´Â CAGR 22.6%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 191¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³³ÃàÀüÁö ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È CAGR 20.1%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ¸ç, Áß±¹Àº ¿¬Æò±Õ 21.0%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹Ì±¹ÀÇ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀå ±Ô¸ð´Â 2023³â 15¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 33¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 21.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 19.8%¿Í 18.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 14.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Àç»ý¿¡³ÊÁö Áß½ÉÀÇ ¼¼°è¿¡¼­ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®°¡ ¿¡³ÊÁö ÀúÀå°ú °èÅë ¾ÈÁ¤È­¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

¼¼°è°¡ ž籤, dz·Â µî Àç»ý¿¡³ÊÁö·Î Á¡Á¡ ´õ ÀüȯÇÏ´Â °¡¿îµ¥, ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ¿¡³ÊÁö ÀúÀå°ú Àü·Â¸Á ¾ÈÁ¤È­¿¡ ÇʼöÀûÀÎ Á¸Àç°¡ µÇ°í ÀÖ½À´Ï´Ù. ±×·¸´Ù¸é ¿À´Ã³¯ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®°¡ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀϱî? Àç»ý¿¡³ÊÁö ¹ßÀüÀº ¿ø·¡ °£ÇæÀûÀ̾ ÇÞºûÀÌ ºñÃ߰ųª ¹Ù¶÷ÀÌ ºÒ ¶§¸¸ ¹ßÀüÇϱ⠶§¹®¿¡ Àü·Â ¼ö¿ä ¹× °ø±ÞÀÌ ºÒÀÏÄ¡ÇÕ´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý¿¡³ÊÁö ¹ßÀü·®ÀÌ ¸¹Àº ½Ã±â¿¡ »ý»êµÈ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¼ö¿ä°¡ °ø±ÞÀ» ÃʰúÇÒ ¶§ À̸¦ ¹æÃâÇÔÀ¸·Î½á ¾ÈÁ¤ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ±×¸®µå¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̰í È­¼®¿¬·á¿¡¼­ ¹þ¾î³ª·Á´Â ¿òÁ÷ÀÓÀÌ °¡¼ÓÈ­µÇ°í ÀÖ´Â °¡¿îµ¥, ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý¿¡³ÊÁö ¹ßÀü°ú Àü·Â ¼ö¿äÀÇ º¯µ¿¼ºÀ» ±ÕÇü ÀÖ°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Á¤ÀüÀ» ¹æÁöÇϰí, ÇÇÅ© ½Ã°£´ë ¹ßÀü¼Ò¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç, º¸´Ù ź·ÂÀûÀ̰í À¯¿¬ÇÑ Àü·Â¸ÁÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, Á¤ºÎ¿Í Àü·Âȸ»ç°¡ Àç»ý¿¡³ÊÁö ÅëÇÕÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¸¦ Á¦°øÇÏ¿© ¿øÈ°ÇÑ ÀüȯÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¹Ì·¡ ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀ¸·Î ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ ¿ë·®, È¿À², ¼ö¸íÀÌ ¾î¶»°Ô Çâ»óµÇ°í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ ¿ë·®, È¿À²¼º ¹× ¼ö¸íÀ» Å©°Ô Çâ»ó½ÃÄÑ ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå ¿ëµµ¿¡ ´õ È¿°úÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ°Ô ¸¸µé¾ú½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ¿¡³ÊÁö ¹Ðµµ¿Í ¼º´ÉÀÌ Çâ»óµÈ ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ °³¹ßÀÔ´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®´Â ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ±ä »çÀÌŬ ¼ö¸í, ºü¸¥ ÀÀ´ä ½Ã°£À¸·Î ÀÎÇØ ÇöÀç ±×¸®µå ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀå¿¡ °¡Àå ³Î¸® »ç¿ëµÇ´Â ±â¼úÀÔ´Ï´Ù. ÀÌ ¹èÅ͸®´Â ´õ ÀÛÀº °ø°£¿¡ ´õ ¸¹Àº ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö Àֱ⠶§¹®¿¡ °ø°£ Á¦¾àÀÌ ÀÖ´Â À¯Æ¿¸®Æ¼ ±Ô¸ðÀÇ ¿ëµµ¿¡ °¡Àå ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, °íü ¸®Æ¬ ¹èÅ͸®¿Í °°Àº ¹èÅ͸® È­ÇÐÀÇ ¹ßÀüÀº ±×¸®µå ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ ¿ë·®°ú ¾ÈÀü¼ºÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ¹ßÀüÀº ¿¡³ÊÁö ÀúÀå¿¡ ¾×ü ÀüÇØÁúÀ» »ç¿ëÇÏ´Â È帧 ÀüÁöÀÇ °³¹ßÀÔ´Ï´Ù. ¹Ù³ªµã »êÈ­ ȯ¿ø ÇÃ·Î¿ì ¹èÅ͸®¿Í °°Àº ÇÃ·Î¿ì ¹èÅ͸®´Â ±ä ¼ö¸í°ú È®Àå ¼ºÀ¸·Î À¯¸íÇÕ´Ï´Ù. ƯÈ÷ Àå±â°£¿¡ °ÉÃÄ ´ë·®ÀÇ ¿¡³ÊÁö¸¦ ÀúÀåÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®¿Í ´Þ¸®, ÇÃ·Î¿ì ¹èÅ͸®´Â ¿­È­¸¦ ÃÖ¼ÒÈ­Çϸ鼭 ¼ö½Ê³âµ¿¾È ¿ë·®À» À¯ÁöÇÒ ¼ö Àֱ⠶§¹®¿¡ Àå±âÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀ» ã´Â °èÅë ¿î¿µÀÚ¿¡°Ô ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÃ·Î¿ì ¹èÅ͸®´Â ÀüÇØÁú ÅÊÅ©ÀÇ Å©±â¸¦ ½±°Ô È®ÀåÇÒ ¼ö Àֱ⠶§¹®¿¡ ´ë±Ô¸ð ¿ëµµ¸¦ À§ÇÑ ¹æ´ëÇÑ ¾çÀÇ ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº ±×¸®µå ±Ô¸ðÀÇ ¹èÅ͸® ¼º´É°ú °ü¸®¿¡µµ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, AI ±â¹Ý ½Ã½ºÅÛÀº Àü·Â ¼ö¿ä, Àü·Â¸Á »óÅ ¹× ±â»ó ¿¹º¸¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ¿¡³ÊÁö ÀúÀå ¹× ¹èÀüÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI´Â ÃæÀü ¹× ¹æÀü Áֱ⸦ ÃÖÀûÈ­ÇÏ°í ¹èÅ͸® ¼¿ÀÇ ¼Ò¸ð¸¦ ÁÙ¿© ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥µµ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥µµ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ¿¹Ãø ´É·ÂÀº ±×¸®µå ±Ô¸ð ¿¡³ÊÁö ÀúÀåÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ¹èÅ͸®°¡ Àå±â°£ ÃÖ»óÀÇ ¼º´ÉÀ¸·Î ÀÛµ¿Çϵµ·Ï º¸ÀåÇÕ´Ï´Ù.

¿­ °ü¸® ¹× ³Ã°¢ ±â¼úÀÇ ¹ßÀüÀ¸·Î ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ ½Å·Ú¼º°ú ¾ÈÀü¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. È¿À²ÀûÀÎ ¿­ °ü¸®´Â ´ëÇü ¹èÅ͸® ½Ã½ºÅÛÀÇ ¼º´É°ú ¼ö¸íÀ» À¯ÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, ƯÈ÷ ±ØÇÑÀÇ ±â¿ÂÀÌ ÀÖ´Â Áö¿ª¿¡¼­´Â ´õ¿í ±×·¯ÇÕ´Ï´Ù. ¼ö³Ã½Ä ¹× ÷´Ü °ø³Ã½Ä ½Ã½ºÅÛ°ú °°Àº »õ·Î¿î ³Ã°¢ ±â¼úÀº ÃÖÀûÀÇ ÀÛµ¿ ¿Âµµ¸¦ À¯ÁöÇÏ¿© °ú¿­À» ¹æÁöÇÏ°í °íÀåÀÇ À§Çè ¾øÀÌ ¹èÅ͸®¸¦ ÃÖ´ë·Î °¡µ¿ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ·¯ÇÑ ¿­ °ü¸® °³¼±À¸·Î ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ¿­¾ÇÇÑ È¯°æ Á¶°Ç¿¡¼­µµ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ¾î ±×¸®µå ¾ÈÁ¤È­¸¦ À§ÇÑ ´õ¿í °ß°íÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® °³¹ß¿¡¼­ ÀçȰ¿ë°ú 2Â÷ÀüÁö Ȱ¿ëÀº Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀå¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷üµéÀº ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÏ°í Æó±â¹°À» ÁÙÀ̱â À§ÇÑ Áö¼Ó °¡´ÉÇÑ ³ë·Â¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àü±âÀÚµ¿Â÷(EV)ÀÇ Æó¹èÅ͸®´Â ±×¸®µå ±Ô¸ðÀÇ ¿¡³ÊÁö ÀúÀå¿¡ Àç»ç¿ëµÇ¾î ºñ¿ë È¿À²ÀûÀ̰í ȯ°æ ģȭÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áß°í ¹èÅ͸®´Â ´õ ÀÌ»ó EVÀÇ °í¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏÁö ¸øÇÒ ¼öµµ ÀÖÁö¸¸, ¿©ÀüÈ÷ ±×¸®µå ¿ëµµ¿¡ ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö ÀúÀåÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹èÅ͸®ÀÇ ÀçȰ¿ë ¹× Àç»ç¿ëÀº ¹èÅ͸® »ý»êÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀÌ°í ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄ̰ú °°Àº ±ÍÁßÇÑ Àç·á¸¦ ȸ¼öÇϰí Àç»ç¿ëÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®°¡ Àç»ý ¿¡³ÊÁö ÅëÇÕ, ±×¸®µå º¹¿ø·Â ¹× ź¼Ò ¹èÃâ °¨¼Ò¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý¿¡³ÊÁö ÅëÇÕ, ±×¸®µå º¹¿ø·Â, ź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àç»ý¿¡³ÊÁö ¹ßÀüÀÇ °¡Àå Å« ¹®Á¦ Áß Çϳª´Â º¯µ¿¼ºÀÔ´Ï´Ù. ž籤 ÆÐ³ÎÀº žçÀÌ ºñÄ¥ ¶§¸¸ Àü±â¸¦ »ý»êÇϰí, dz·Â ÅͺóÀº ¹Ù¶÷ÀÌ ºÒ ¶§¸¸ Àü±â¸¦ »ý»êÇÕ´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ¹ßÀü ½Ã À׿© Àç»ý °¡´É ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¼ö¿ä°¡ ¸¹°Å³ª ¹ßÀü·®ÀÌ ÀûÀ» ¶§ ¹æÃâÇÔÀ¸·Î½á ÀÌ ¹®Á¦¸¦ ÇØ°áÇϰí ÀϰüµÇ°í ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» º¸ÀåÇÕ´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý¿¡³ÊÁö ¹ßÀüÀÇ º¯µ¿¼ºÀ» ÆòÁØÈ­ÇÔÀ¸·Î½á ¿¡³ÊÁö ¹Í½º¿¡ Àç»ý¿¡³ÊÁöÀÇ º¸±Þ·üÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â È­¼®¿¬·á ±â¹Ý ¹ßÀü¼Ò, ƯÈ÷ Àü·Â ¼ö¿ä°¡ ¸¹Àº ½Ã±â¿¡ ÀÚÁÖ °¡µ¿µÇ´Â ÇÇÅ© ¹ßÀü¼Ò¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÇÇÅ© ¹ßÀü¼Ò´Â ÀϹÝÀûÀ¸·Î ±âÀúºÎÇÏ ¹ßÀü¼Òº¸´Ù È¿À²ÀÌ ³·°í ¿À¿°µµ°¡ ³ô±â ¶§¹®¿¡ ¿¡³ÊÁö ÀúÀåÀ» ÅëÇØ ÀÌ·¯ÇÑ ¼³ºñÀÇ Çʿ伺À» ÁÙÀÌ¸é ¿Â½Ç °¡½º ¹èÃâ·® °¨¼Ò¿¡ Á÷Á¢ÀûÀ¸·Î ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý °¡´É ¿¡³ÊÁö¿øÀÇ È°¿ëÀ» ±Ø´ëÈ­Çϰí È­¼® ¿¬·á ¹é¾÷ÀÇ Çʿ伺À» ÃÖ¼ÒÈ­ÇÏ¿© º¸´Ù ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ±×¸®µå¸¦ ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àü·Â¸ÁÀÇ º¹¿ø·Â°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŰ´Â µ¥¿¡µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ´õ ¸¹Àº Àç»ý¿¡³ÊÁö°¡ Àü·Â¸Á¿¡ ÅëÇյɼö·Ï ¼ö¿ä ¹× °ø±ÞÀÇ ºÒ±ÕÇüÀÌ ¹ß»ýÇÒ À§ÇèÀÌ Ä¿Áý´Ï´Ù. ÀÌ·¯ÇÑ ºÒ±ÕÇüÀº Á¤Àü, Àü¾Ð º¯µ¿, Àü·Â¸Á ºÒ¾ÈÁ¤À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ½Å¼ÓÇÑ ¹ÝÀÀÇü ÃàÀü ±â´ÉÀ» Á¦°øÇÔÀ¸·Î½á Àü·Â¸Á ¾ÈÁ¤È­¿¡ ±â¿©Çϰí, °úÀ× »ý»ê ½Ã À׿© Àü·ÂÀ» Èí¼öÇϰí, ¼ö¿ä°¡ °ø±ÞÀ» ÃʰúÇÒ °æ¿ì Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº Àüü ¿¡³ÊÁö ±×¸®µåÀÇ Åº·Â¼ºÀ» ³ô¿© ÀÌ»ó±âÈÄ, Àåºñ °íÀå, ¿¹±âÄ¡ ¸øÇÑ ¼ö¿ä ±ÞÁõ°ú °°Àº È¥¶õÀ» °ßµô ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ªÇÒÀº ºÐ»êÇü ¿¡³ÊÁö ±×¸®µå·ÎÀÇ ÀüȯÀ» ÃËÁøÇÏ´Â °ÍÀÔ´Ï´Ù. ¿Á»ó ž籤, dz·Â Åͺó, ÁÖÅÃ¿ë ¹èÅ͸® ½Ã½ºÅÛ°ú °°Àº ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿ø(DER)ÀÌ È®»êµÊ¿¡ µû¶ó ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ÀÌ·¯ÇÑ ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀÇ ±ÕÇüÀ» ¸ÂÃß°í °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¸¦ Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ °èÅë ¿î¿µÀÚ´Â ¼Ò±Ô¸ðÀÇ ±¹ÁöÀû Àü¿ø ³×Æ®¿öÅ© Àüü¿¡¼­ ¿¡³ÊÁö »ý»ê°ú ¼Òºñ¸¦ È¿°úÀûÀ¸·Î Á¶Á¤ÇÏ¿© Áß¾Ó °èÅëÀÇ ºÎ´ãÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿©·¯ Àü¿øÀ¸·ÎºÎÅÍ ¼­·Î ´Ù¸¥ ½Ã°£¿¡ ¿¡³ÊÁö¸¦ ÀúÀåÇϰí Àü¼ÛÇÒ ¼ö Àֱ⠶§¹®¿¡ ±×¸®µå°¡ º¸´Ù ºÐ»êµÈ ±¸Á¶·Î ÁøÈ­ÇÏ´õ¶óµµ ¾ÈÁ¤¼º°ú ½Å·Ú¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

±×¸®µå ±Ô¸ðÀÇ ¹èÅ͸®´Â Àü·Â¸Á º¹¿ø·Â°ú Àç»ý¿¡³ÊÁö ÅëÇÕÀ» Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀ̴µ¥µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àü ¼¼°è°¡ ź¼Ò ¹èÃâ Á¦·Î ´Þ¼º µî ¾ß½ÉÂù ±âÈÄ º¯È­ ¸ñÇ¥¸¦ ÇâÇØ ³ª¾Æ°¡°í ÀÖ´Â °¡¿îµ¥, ¿¡³ÊÁö ÀúÀåÀº Àü·Â ºÎ¹®ÀÇ Å»Åº¼ÒÈ­¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ûÁ¤ ¿¡³ÊÁö ÀúÀåÀ» °¡´ÉÇÏ°Ô Çϰí È­¼® ¿¬·á ¹ßÀüÀÇ Çʿ伺À» ÁÙÀÓÀ¸·Î½á Àü·Â »ý»êÀÇ Åº¼Ò ¹èÃâ·®À» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ µµÀÔÀº Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀüÀÇ ¾ïÁ¦ ºóµµ¸¦ ÁÙ¿© ûÁ¤ ¿¡³ÊÁö°¡ ³¶ºñµÇÁö ¾Ê°í ¿ÏÀüÈ÷ Ȱ¿ëµÉ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀå¿¡´Â Àç»ý¿¡³ÊÁö µµÀÔ È®´ë, Á¤ºÎ Àμ¾Æ¼ºê ¹× ±ÔÁ¦, ¹èÅ͸® ±â¼ú ¹ßÀü, Àü·Â¸Á º¹¿ø·Â ¹× ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ù°, Àü ¼¼°èÀûÀ¸·Î Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀåÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. °¢±¹ÀÌ Å¾籤, dz·Â ¹× ±âŸ Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇÔ¿¡ µû¶ó ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ ºÐ¸íÇØÁö°í ÀÖ½À´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý¿¡³ÊÁö ¹ßÀüÀÇ º¯µ¿¼ºÀ» °ü¸®Çϰí, Àç»ý¿¡³ÊÁö·Î »ý»êµÈ Àü·ÂÀ» ÀúÀåÇß´Ù°¡ ÇÊ¿äÇÒ ¶§ ÇÊ¿äÇÑ ¸¸Å­ÀÇ Àü·ÂÀ» °ø±ÞÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

µÑ°, Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í ±ÔÁ¦´Â ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® äÅÃÀ» °¡¼ÓÈ­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº Á¤ºÎ´Â Àü·Âȸ»ç ¹× ºñ»óÀå±â¾÷ÀÌ ¿¡³ÊÁö ÀúÀå¿¡ ÅõÀÚÇϵµ·Ï Àå·ÁÇϱâ À§ÇØ ¼¼¾×°øÁ¦, º¸Á¶±Ý ¹× º¸Á¶±Ý°ú °°Àº ÀçÁ¤Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¿ë·® ½ÃÀå °³Çõ ¹× Àç»ý¿¡³ÊÁö Æ÷Æ®Æú¸®¿À ±âÁذú °°Àº ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â Àç»ý¿¡³ÊÁö ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ¼ÛÀü¸ÁÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϱâ À§ÇØ °èÅë ¿î¿µÀÚ°¡ ¿¡³ÊÁö ÀúÀå ±â¼úÀ» äÅÃÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹, µ¶ÀÏ, Áß±¹, È£ÁÖ ¹× ±âŸ ±¹°¡µéÀº °èÅë ±Ô¸ðÀÇ ÃàÀüÁö µµÀÔÀ» Áö¿øÇÏ´Â Á¤Ã¥À» µµÀÔÇϰí ÀÖÀ¸¸ç, ÃàÀüÁö´Â ±¹°¡ ¿¡³ÊÁö Àü·«ÀÇ Áß¿äÇÑ ºÎºÐÀ¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¹èÅ͸® È­ÇÐ, Á¦Á¶ ¹× ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛÀÇ ±â¼ú ¹ßÀüµµ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¾Õ¼­ ¾ð±ÞÇßµíÀÌ, ¸®Æ¬ À̿ ¹èÅ͸®, ÇÃ·Î¿ì ¹èÅ͸®, AI¸¦ Ȱ¿ëÇÑ ¿¡³ÊÁö °ü¸®ÀÇ °³¼±À¸·Î ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ´õ È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¿¡³ÊÁö ÀúÀå ºñ¿ëÀ» ³·Ãç Àü·Âȸ»ç¿Í ºñ»óÀå ±â¾÷ÀÌ ´ë±Ô¸ð ¹èÅ͸® ¼³ºñ¿¡ ½±°Ô ÅõÀÚÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀº ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ ºñ¿ë Àý°¨°ú ¼º´É Çâ»óÀ» ´õ¿í ÃËÁøÇÏ¿© äÅÃÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü·Â¸Á º¹¿ø·Â°ú ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡µµ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÀÌ»ó±âÈÄ¿Í »çÀ̹ö °ø°Ý°ú °°Àº È¥¶õÀÌ ºó¹øÇÏ°Ô ¹ß»ýÇÔ¿¡ µû¶ó Àü·Âȸ»ç¿Í Àü·Â¸Á ¿î¿µÀÚ´Â ¾ÈÁ¤ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â °ø±ÞÀ» º¸ÀåÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àü·Â¸Á º¹¿ø·ÂÀ» °­È­ÇÏ´Â µ¥ ÇÊ¿äÇÑ À¯¿¬¼º°ú ½Å¼ÓÇÑ ´ëÀÀ ´É·ÂÀ» Á¦°øÇϱ⠶§¹®¿¡ ¿¡³ÊÁö ¾Èº¸¸¦ °­È­ÇϰíÀÚ ÇÏ´Â Àü·Âȸ»ç¿¡°Ô ¸Å·ÂÀûÀÎ ÅõÀÚó°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ¼ö¿ä ¹× °ø±ÞÀÇ ±ÕÇüÀ» ¸ÂÃß°í, Á¤ÀüÀ» ¹æÁöÇϰí, ºñ»ó ½Ã ¹é¾÷ Àü·ÂÀ» °ø±ÞÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, ±×¸®µåÀÇ Åº·Â¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

Àü±âÂ÷(EV)°¡ Àü·Â¸Á¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ´Â °Íµµ ±×¸®µå ½ºÄÉÀÏ ¿¡³ÊÁö ÀúÀåÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖÀ¸¸ç, EVÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Àü·Â ¼ö¿ä°¡ Áõ°¡ÇÏ¿© Àü·Â¸Á¿¡ ´õ ¸¹Àº ºÎ´ãÀ» ÁÙ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â ¼ö¿ä°¡ ÀûÀº ½Ã°£´ë¿¡ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¼ö¿ä°¡ ¸¹À» ¶§ ¹æÃâÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼ö¿ä¸¦ °ü¸®ÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EV°¡ Àü±â¸¦ ±×¸®µå¿¡ ´Ù½Ã °ø±ÞÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â V2G(Vehicle to Grid) ±â¼úÀº ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®ÀÇ Áö¿øÀ» ¹Þ¾Æ ¿¡³ÊÁö È帧ÀÇ ±ÕÇüÀ» ¸ÂÃß°í ±×¸®µåÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î, ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀº Àç»ý¿¡³ÊÁö µµÀÔ È®´ë, Á¤ºÎ Áö¿ø Á¤Ã¥, ¹èÅ͸® ±â¼ú ¹ßÀü, Àü·Â¸Á º¹¿ø·Â ¹× ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è°¡ º¸´Ù ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁöÀÇ ¹Ì·¡·Î ÀüȯÇÏ´Â °úÁ¤¿¡¼­ ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àü·Â¸ÁÀÇ ¾ÈÁ¤¼º, È¿À²¼º, ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù. ±×¸®µå ½ºÄÉÀÏ ¹èÅ͸®´Â Àç»ý ¿¡³ÊÁöÀÇ ÅëÇÕÀ» °¡´ÉÇÏ°Ô Çϰí, ÀÌ»êȭź¼Ò ¹èÃâÀ» ÁÙÀ̰í, Àü·Â¸ÁÀÇ º¹¿ø·ÂÀ» °­È­ÇÔÀ¸·Î½á Çö´ë ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Ãʼ®ÀÌ µÉ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 48°Ç)

  • ABB Group
  • BYD Co., Ltd.
  • Fluence Energy, LLC
  • General Electric Company
  • GS Yuasa Corporation
  • LG Chem
  • NGK Insulators Ltd.
  • Panasonic Corporation
  • Saft Groupe SA
  • Samsung SDI Co., Ltd
  • Tesla Motors, Inc.
  • Toshiba Corporation

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå °³¿ä
  • ÁÖ¿ä ±â¾÷
  • ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ
  • ¼¼°è ½ÃÀå Àü¸Á

Á¦3Àå ½ÃÀå ºÐ¼®

  • ¹Ì±¹
  • ij³ª´Ù
  • ÀϺ»
  • Áß±¹
  • À¯·´
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • ÀÌÅ»¸®¾Æ
  • ¿µ±¹
  • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ±âŸ Áö¿ª

Á¦4Àå °æÀï

LSH 24.10.08

Global Grid-Scale Battery Market to Reach US$21.8 Billion by 2030

The global market for Grid-Scale Battery estimated at US$5.4 Billion in the year 2023, is expected to reach US$21.8 Billion by 2030, growing at a CAGR of 22.1% over the analysis period 2023-2030. Lithium-Ion Battery, one of the segments analyzed in the report, is expected to record a 22.6% CAGR and reach US$19.1 Billion by the end of the analysis period. Growth in the Lead Acid Battery segment is estimated at 20.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.5 Billion While China is Forecast to Grow at 21.0% CAGR

The Grid-Scale Battery market in the U.S. is estimated at US$1.5 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.3 Billion by the year 2030 trailing a CAGR of 21.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 19.8% and 18.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.8% CAGR.

Global Grid-Scale Battery Market - Key Trends and Drivers Summarized

Why Are Grid-Scale Batteries Becoming Essential for Energy Storage and Grid Stability in a Renewable Energy-Driven World?

Grid-scale batteries are becoming essential for energy storage and grid stability as the world increasingly shifts towards renewable energy sources like solar and wind. But why are grid-scale batteries so important today? Renewable energy sources are intermittent by nature, generating power only when the sun shines or the wind blows, which can create mismatches between electricity supply and demand. Grid-scale batteries store excess energy generated during periods of high renewable energy production and release it when demand exceeds supply, ensuring a stable and reliable energy grid.

With the global push towards reducing carbon emissions and transitioning away from fossil fuels, grid-scale batteries offer a solution that balances renewable energy generation with the fluctuations in power demand. They help prevent blackouts, reduce reliance on peaking power plants, and support a more resilient and flexible electricity grid. Moreover, as governments and utilities prioritize renewable energy integration, grid-scale batteries enable a smooth transition by providing the necessary infrastructure for large-scale energy storage, making them a critical component of the future energy system.

How Are Technological Advancements Enhancing the Capacity, Efficiency, and Lifespan of Grid-Scale Batteries?

Technological advancements are significantly enhancing the capacity, efficiency, and lifespan of grid-scale batteries, making them more effective and reliable for large-scale energy storage applications. One of the most important advancements is the development of lithium-ion batteries with improved energy density and performance. Lithium-ion batteries are now the most widely used technology for grid-scale energy storage due to their high energy density, long cycle life, and fast response times. These batteries can store more energy in a smaller space, making them ideal for utility-scale applications where space is a constraint. Additionally, advancements in battery chemistry, such as solid-state lithium batteries, are further increasing the capacity and safety of grid-scale energy storage systems.

Another key advancement is the development of flow batteries, which use liquid electrolytes to store energy. Flow batteries, such as vanadium redox flow batteries, are known for their long lifespan and scalability. They are particularly well-suited for storing large amounts of energy over extended periods. Unlike lithium-ion batteries, flow batteries can maintain their capacity for decades with minimal degradation, making them an attractive option for grid operators looking for long-term energy storage solutions. Moreover, flow batteries can be easily scaled by increasing the size of the electrolyte tanks, allowing them to store vast amounts of energy for large-scale applications.

The integration of artificial intelligence (AI) and machine learning is also revolutionizing the performance and management of grid-scale batteries. AI-driven systems can optimize energy storage and distribution by analyzing real-time data on electricity demand, grid conditions, and weather forecasts. This allows grid operators to predict when energy storage will be needed and efficiently dispatch stored energy to prevent outages or stabilize the grid. AI can also help extend the lifespan of batteries by optimizing charging and discharging cycles, reducing wear and tear on the battery cells. This predictive capability improves the overall efficiency of grid-scale energy storage and ensures that batteries operate at peak performance for longer periods.

Advancements in thermal management and cooling technologies are enhancing the reliability and safety of grid-scale batteries. Efficient thermal management is crucial for maintaining the performance and longevity of large battery systems, especially in regions with extreme temperatures. New cooling technologies, such as liquid cooling and advanced air-cooling systems, help maintain optimal operating temperatures, preventing overheating and ensuring that batteries can operate at full capacity without risk of failure. These improvements in thermal management allow grid-scale batteries to perform reliably even in harsh environmental conditions, making them a more robust solution for grid stabilization.

Recycling and second-life battery use are also becoming increasingly important in the development of grid-scale batteries. As the demand for energy storage grows, manufacturers are focusing on sustainable practices to extend the life of batteries and reduce waste. Used batteries from electric vehicles (EVs), for example, are being repurposed for grid-scale energy storage, providing a cost-effective and environmentally friendly solution. These second-life batteries may no longer meet the high-performance requirements of EVs but can still provide reliable energy storage for grid applications. Recycling and reusing batteries help reduce the environmental impact of battery production and ensure that valuable materials like lithium, cobalt, and nickel are recovered and reused.

Why Are Grid-Scale Batteries Critical for Renewable Energy Integration, Grid Resilience, and Reducing Carbon Emissions?

Grid-scale batteries are critical for renewable energy integration, grid resilience, and reducing carbon emissions because they provide a reliable means of storing and dispatching energy generated from intermittent sources like solar and wind. One of the biggest challenges with renewable energy is its variability—solar panels only generate power when the sun is shining, and wind turbines only produce electricity when the wind is blowing. Grid-scale batteries solve this issue by storing excess renewable energy when it is generated and releasing it during times of high demand or low production, ensuring a consistent and stable supply of electricity.

By smoothing out the fluctuations in renewable energy generation, grid-scale batteries allow for a higher penetration of renewables into the energy mix. This helps reduce the reliance on fossil fuel-based power plants, particularly peaking plants that are often fired up during periods of high electricity demand. Peaker plants are typically less efficient and more polluting than base-load power plants, so reducing the need for these facilities through energy storage directly contributes to lower greenhouse gas emissions. Grid-scale batteries enable a cleaner, more sustainable energy grid by maximizing the use of renewable energy sources and minimizing the need for fossil fuel backup.

Grid-scale batteries also play a crucial role in improving grid resilience and stability. As more renewable energy is integrated into the grid, the risk of imbalances between supply and demand increases. These imbalances can lead to power outages, voltage fluctuations, and grid instability. By providing rapid-response energy storage, grid-scale batteries help stabilize the grid, absorb excess electricity during periods of overproduction, and supply power when demand exceeds supply. This flexibility enhances the overall resilience of the energy grid, making it more capable of withstanding disruptions, such as extreme weather events, equipment failures, or unexpected spikes in demand.

Another critical role of grid-scale batteries is in facilitating the transition to a decentralized energy grid. As distributed energy resources (DERs) like rooftop solar, wind turbines, and residential battery systems become more widespread, grid-scale batteries provide the infrastructure needed to balance and manage these decentralized energy sources. This allows grid operators to effectively coordinate energy generation and consumption across a network of smaller, localized power sources, reducing the strain on the central grid. The ability to store and dispatch energy from multiple sources at different times ensures that the grid remains stable and reliable even as it evolves toward a more decentralized structure.

In addition to supporting grid resilience and renewable energy integration, grid-scale batteries play a vital role in reducing carbon emissions. As the world moves toward ambitious climate goals, such as achieving net-zero emissions, energy storage is essential for decarbonizing the power sector. By enabling the storage of clean energy and reducing the need for fossil fuel-based power generation, grid-scale batteries help significantly lower the carbon footprint of electricity production. Furthermore, the deployment of grid-scale batteries can reduce the frequency of curtailing renewable energy generation, ensuring that clean energy is fully utilized rather than wasted.

What Factors Are Driving the Growth of the Grid-Scale Battery Market?

Several key factors are driving the rapid growth of the grid-scale battery market, including the increasing deployment of renewable energy, government incentives and regulations, advancements in battery technology, and the growing demand for grid resilience and energy security. First, the global shift toward renewable energy is a major driver of the grid-scale battery market. As countries ramp up their investments in solar, wind, and other renewable energy projects, the need for large-scale energy storage solutions has become increasingly apparent. Grid-scale batteries are essential for managing the variability of renewable energy and ensuring that power generated from renewable sources can be stored and dispatched when needed.

Second, government incentives and regulations are playing a significant role in accelerating the adoption of grid-scale batteries. Many governments are offering financial incentives, such as tax credits, grants, and subsidies, to encourage utilities and private companies to invest in energy storage. In addition, regulatory frameworks, such as capacity market reforms and renewable portfolio standards, are pushing grid operators to adopt energy storage technologies to meet their renewable energy targets and ensure grid reliability. Countries like the United States, Germany, China, and Australia have introduced policies that support the deployment of grid-scale batteries, making them a critical part of national energy strategies.

Technological advancements in battery chemistry, manufacturing, and energy management systems are also contributing to the growth of the grid-scale battery market. As discussed earlier, improvements in lithium-ion batteries, flow batteries, and AI-powered energy management are making grid-scale batteries more efficient, durable, and cost-effective. These advancements are lowering the cost of energy storage, making it more accessible for utilities and private companies to invest in large-scale battery installations. The continued innovation in battery technology is expected to further reduce costs and improve the performance of grid-scale batteries, driving even greater adoption.

The growing demand for grid resilience and energy security is another major factor fueling the growth of the grid-scale battery market. As extreme weather events, cyberattacks, and other disruptions become more frequent, utilities and grid operators are under increasing pressure to ensure a stable and reliable power supply. Grid-scale batteries provide the flexibility and rapid-response capabilities needed to enhance grid resilience, making them an attractive investment for utilities seeking to improve energy security. Additionally, grid-scale batteries help balance supply and demand, prevent blackouts, and provide backup power during emergencies, making them essential for maintaining a resilient grid.

The increasing integration of electric vehicles (EVs) into the grid is also driving the need for grid-scale energy storage. As EV adoption grows, the demand for electricity is expected to rise, putting additional strain on the grid. Grid-scale batteries help manage this demand by storing excess energy during periods of low demand and releasing it when demand is high. Additionally, vehicle-to-grid (V2G) technology, which allows EVs to discharge electricity back into the grid, can be supported by grid-scale batteries to balance the flow of energy and ensure grid stability.

In conclusion, the growth of the grid-scale battery market is being driven by the increasing deployment of renewable energy, supportive government policies, advancements in battery technology, and the growing demand for grid resilience and energy security. As the world transitions to a cleaner, more sustainable energy future, grid-scale batteries will play a central role in ensuring the stability, efficiency, and reliability of the electricity grid. By enabling the integration of renewable energy, reducing carbon emissions, and enhancing grid resilience, grid-scale batteries are poised to become a cornerstone of the modern energy system.

Select Competitors (Total 48 Featured) -

  • ABB Group
  • BYD Co., Ltd.
  • Fluence Energy, LLC
  • General Electric Company
  • GS Yuasa Corporation
  • LG Chem
  • NGK Insulators Ltd.
  • Panasonic Corporation
  • Saft Groupe SA
  • Samsung SDI Co., Ltd
  • Tesla Motors, Inc.
  • Toshiba Corporation

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

  • 1. MARKET OVERVIEW
    • Influencer Market Insights
    • Global Economic Update
    • Grid-Scale Battery - Global Key Competitors Percentage Market Share in 2024 (E)
    • Competitive Market Presence - Strong/Active/Niche/Trivial for Players Worldwide in 2024 (E)
  • 2. FOCUS ON SELECT PLAYERS
  • 3. MARKET TRENDS & DRIVERS
    • Rising Demand for Renewable Energy Storage Drives Growth in Grid-scale Battery Market
    • Innovations in Lithium-ion and Solid-state Battery Technologies Propel Adoption
    • Future Directions: Development of Long-duration and Flow Battery Technologies
    • Technological Advancements in Battery Management Systems (BMS) for Optimized Performance
    • Market Opportunities in Developing Economies With Expanding Renewable Energy Sectors
    • Growth in Off-grid and Microgrid Applications Driving Demand for Grid-scale Batteries
    • Role of Grid-scale Batteries in Supporting Peak Load Shaving and Demand Response
    • Innovations in Energy Storage as a Service (ESaaS) to Accelerate Grid Battery Adoption
    • Expansion of Virtual Power Plants (VPPs) and Their Impact on Grid-scale Battery Utilization
  • 4. GLOBAL MARKET PERSPECTIVE
    • TABLE 1: World Grid-Scale Battery Market Analysis of Annual Sales in US$ Million for Years 2014 through 2030
    • TABLE 2: World Recent Past, Current & Future Analysis for Grid-Scale Battery by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 3: World 7-Year Perspective for Grid-Scale Battery by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2024 & 2030
    • TABLE 4: World Recent Past, Current & Future Analysis for Lithium-Ion by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 5: World 7-Year Perspective for Lithium-Ion by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2024 & 2030
    • TABLE 6: World Recent Past, Current & Future Analysis for Lead Acid by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 7: World 7-Year Perspective for Lead Acid by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2024 & 2030
    • TABLE 8: World Recent Past, Current & Future Analysis for Other Types by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 9: World 7-Year Perspective for Other Types by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2024 & 2030
    • TABLE 10: World Recent Past, Current & Future Analysis for Ancillary Services by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 11: World 7-Year Perspective for Ancillary Services by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2024 & 2030
    • TABLE 12: World Recent Past, Current & Future Analysis for Renewable Integration by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 13: World 7-Year Perspective for Renewable Integration by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2024 & 2030
    • TABLE 14: World Recent Past, Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 15: World 7-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2024 & 2030

III. MARKET ANALYSIS

  • UNITED STATES
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United States for 2024 (E)
    • TABLE 16: USA Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 17: USA 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 18: USA Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 19: USA 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • CANADA
    • TABLE 20: Canada Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 21: Canada 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 22: Canada Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 23: Canada 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • JAPAN
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Japan for 2024 (E)
    • TABLE 24: Japan Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 25: Japan 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 26: Japan Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 27: Japan 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • CHINA
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in China for 2024 (E)
    • TABLE 28: China Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 29: China 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 30: China Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 31: China 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • EUROPE
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Europe for 2024 (E)
    • TABLE 32: Europe Recent Past, Current & Future Analysis for Grid-Scale Battery by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Million for Years 2023 through 2030 and % CAGR
    • TABLE 33: Europe 7-Year Perspective for Grid-Scale Battery by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2024 & 2030
    • TABLE 34: Europe Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 35: Europe 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 36: Europe Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 37: Europe 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • FRANCE
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in France for 2024 (E)
    • TABLE 38: France Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 39: France 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 40: France Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 41: France 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • GERMANY
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Germany for 2024 (E)
    • TABLE 42: Germany Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 43: Germany 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 44: Germany Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 45: Germany 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • ITALY
    • TABLE 46: Italy Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 47: Italy 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 48: Italy Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 49: Italy 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • UNITED KINGDOM
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in the United Kingdom for 2024 (E)
    • TABLE 50: UK Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 51: UK 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 52: UK Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 53: UK 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • REST OF EUROPE
    • TABLE 54: Rest of Europe Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 55: Rest of Europe 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 56: Rest of Europe Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 57: Rest of Europe 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • ASIA-PACIFIC
    • Grid-Scale Battery Market Presence - Strong/Active/Niche/Trivial - Key Competitors in Asia-Pacific for 2024 (E)
    • TABLE 58: Asia-Pacific Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 59: Asia-Pacific 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 60: Asia-Pacific Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 61: Asia-Pacific 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030
  • REST OF WORLD
    • TABLE 62: Rest of World Recent Past, Current & Future Analysis for Grid-Scale Battery by Type - Lithium-Ion, Lead Acid and Other Types - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 63: Rest of World 7-Year Perspective for Grid-Scale Battery by Type - Percentage Breakdown of Value Sales for Lithium-Ion, Lead Acid and Other Types for the Years 2024 & 2030
    • TABLE 64: Rest of World Recent Past, Current & Future Analysis for Grid-Scale Battery by Application - Ancillary Services, Renewable Integration and Other Applications - Independent Analysis of Annual Sales in US$ Million for the Years 2023 through 2030 and % CAGR
    • TABLE 65: Rest of World 7-Year Perspective for Grid-Scale Battery by Application - Percentage Breakdown of Value Sales for Ancillary Services, Renewable Integration and Other Applications for the Years 2024 & 2030

IV. COMPETITION

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦