![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1595034
¼¼°èÀÇ P2G(Power-to-Gas) ½ÃÀåPower-to-Gas |
¼¼°èÀÇ P2G(Power-to-Gas) ½ÃÀåÀº 2030³â±îÁö 8,900¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2023³â¿¡ 4,940¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ P2G(Power-to-Gas) ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2023-2030³â¿¡ CAGR 8.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 8,900¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÀüÇØ ±â¼úÀº CAGR 9.2%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 5,980¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸ÞÅºÈ ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 8.0%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 1,370¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, Áß±¹Àº CAGR 8.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø
¹Ì±¹ÀÇ P2G(Power-to-Gas) ½ÃÀåÀº 2023³â¿¡ 1,370¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ 2023-2030³â CAGR 8.1%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 1,360¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 8.2%¿Í 7.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 6.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ P2G(Power-to-Gas) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
P2G(Power-to-Gas) ±â¼úÀº ¿¡³ÊÁö ÀüȯÀÇ ÇÙ½É ±â¾÷À¸·Î ºÎ»óÇϰí Àִ°¡?
P2G(Power-to-Gas)(Power to Gas, P2G) ±â¼úÀº Àü ¼¼°è ¿¡³ÊÁö ÀüȯÀÇ ÇÙ½É ¼Ö·ç¼ÇÀ¸·Î, ƯÈ÷ °¢±¹ÀÌ ¾ß½ÉÂù ź¼Ò °¨Ãà ¸ñÇ¥¸¦ ´Þ¼ºÇϰí Àç»ý ¿¡³ÊÁöÀÇ ±×¸®µå ÅëÇÕÀ» ´Ã¸®±â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥ ±Þ¼ÓÈ÷ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ °øÁ¤Àº dz·ÂÀ̳ª ž籤°ú °°Àº À׿© Àç»ý ¿¡³ÊÁö¸¦ Àü±âºÐÇØ¸¦ ÅëÇØ ¼ö¼Ò¿Í ÇÕ¼º ¸ÞźÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. À׿© Àü·ÂÀ» °¡½º·Î ÀüȯÇÔÀ¸·Î½á Àü·Â-°¡½ºÈ´Â Àå±âÀûÀÎ ¿¡³ÊÁö ÀúÀåÀ» À§ÇÑ È¿°úÀûÀÎ ¹æ¹ýÀ» Á¦°øÇϰí Àç»ý ¿¡³ÊÁö¿Í °ü·ÃµÈ °£Ç漺 ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. Àü ¼¼°è¿¡¼ dz·Â ¹× ž籤¹ßÀü ¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ À¯¿¬ÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, P2G´Â À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇÏ¿© Àü·Â¸ÁÀÇ ±ÕÇüÀ» ¸ÂÃß´Â µ¥ µµ¿òÀÌ µÉ »Ó¸¸ ¾Æ´Ï¶ó Áß°ø¾÷, ³¹æ, ¿î¼Û µî Àü±âÈÇϱ⠾î·Á¿î ºÎ¹®À» Żź¼ÒÈÇÒ ¼ö ÀÖ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù. Żź¼ÒÈÇÒ ¼ö ÀÖ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù. ƯÈ÷ À¯·´°ú ¾Æ½Ã¾Æ ÀϺΠÁö¿ª¿¡¼´Â Àç»ý¿¡³ÊÁö Àǹ«È¸¦ °·ÂÇÏ°Ô ÃßÁøÇϰí ÀÖ´Â ±¹°¡µéÀÌ ¿¡³ÊÁö »ýŰ踦 º¸¿ÏÇϰí ģȯ°æ ´ëü ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» ÀνÄÇϰí Àü·Â-°¡½º ±â¼úÀ» ¼±µµÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù.
ÆÄ¿ö-Åõ-°¡½º ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ´Â ±â¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?
ÀüÇØÁú È¿À², °¡½º ÀúÀå ¹× À¯Åë ÀÎÇÁ¶óÀÇ ±â¼ú ¹ßÀüÀº Àü·Â-°¡½º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä Çõ½Å Áß Çϳª´Â ¾ç¼ºÀÚ ±³È¯¸·(PEM) ÀüÇØÁ¶, ¾ËÄ®¸® ÀüÇØÁ¶, °íü»êȹ° ÀüÇØÁ¶ µî º¸´Ù È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ÀüÇØÁ¶ÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº º¸´Ù ºñ¿ë È¿À²ÀûÀ̰í, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀ¸¸ç, ´ë±Ô¸ð ¿î¿µÀÌ °¡´ÉÇÏ¿© P2G °øÁ¤ÀÇ º¸±ÞÀÌ Á¡Á¡ ´õ Çö½Çȵǰí ÀÖ½À´Ï´Ù. ƯÈ÷ PEM ÀüÇØÁ¶´Â ÀÀ´ä ½Ã°£ÀÌ ºü¸£°í ºÎÇÏ º¯µ¿¿¡µµ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, dz·ÂÀ̳ª ž籤°ú °°Àº Àç»ý ¿¡³ÊÁö¿øÀÌ º»ÁúÀûÀ¸·Î º¯µ¿ÀÌ ½ÉÇÏ´Ù´Â Á¡¿¡¼ ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °í¾Ð ÅÊÅ© ¹× ÁöÇÏ ÀúÀåÀ» Æ÷ÇÔÇÑ ¼ö¼Ò ÀúÀå ±â¼úÀÇ ¹ßÀüÀº Àü·Â-°¡½º °øÁ¤ÀÇ ÇÙ½É °úÁ¦ Áß ÇϳªÀÎ ´ë·®ÀÇ ¼ö¼Ò¸¦ ¾ÈÀüÇÏ°í °æÁ¦ÀûÀ¸·Î ÀúÀåÇÏ´Â ¹®Á¦¸¦ ±Øº¹ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÆÄÀÌÇÁ¶óÀÎ, ÁÖÀ¯¼Ò µî ¼ö¼Ò ¿î¼Û ÀÎÇÁ¶óÀÇ °³¹ßÀº ƯÈ÷ ¿î¼Û ¹× Á¦Á¶¿Í °°Àº »ê¾÷¿¡¼ Á¦Á¶ ÇöÀå°ú ÃÖÁ¾»ç¿ëÀÚ¸¦ ¿¬°áÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ ±âÁ¸ õ¿¬°¡½º ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ´Â ÇÕ¼º ¸Þź »ý»ê¿¡ ´ëÇÑ ¿¬±¸µµ ÁøÇà ÁßÀ̸ç, ÀÌ´Â Àü·Â-°¡½º ±â¼úÀÇ Àû¿ë ¹üÀ§¸¦ È®ÀåÇÏ°í ¼¼°è ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
Á¤Ã¥Àû Áö¿ø°ú ȯ°æ ¸ñÇ¥°¡ ¾î¶»°Ô P2G(Power-to-Gas) äÅÃÀ» ÃËÁøÇϰí Àִ°¡?
Àü·Â-°¡½º ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀº ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̰í Àç»ý¿¡³ÊÁö µµÀÔÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎ Á¤Ã¥ ¹× ȯ°æ Á¤Ã¥ÀÔ´Ï´Ù. ¸¹Àº ±¹°¡µéÀÌ Åº¼ÒÁ߸³À̶ó´Â ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤Çϰí ÀÖÀ¸¸ç, °æÁ¦ÀÇ ¸ðµç ºÎ¹®¿¡¼ ¹èÃâ·®À» ȹ±âÀûÀ¸·Î °¨ÃàÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. Àü·Â-°¡½º ±â¼úÀÇ ¹ü¿ë¼ºÀº ƯÈ÷ ÁßÀåºñ ¿î¼Û, ö° Á¦Á¶, ÈÇÐ »ý»ê°ú °°ÀÌ Á÷Á¢ Àü±âȰ¡ ¾î·Á¿î ºÐ¾ß¿¡¼ ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ À¯¿ëÇÑ ÅøÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î P2G·Î »ý»êµÈ ¼ö¼Ò´Â ÀÚµ¿Â÷ÀÇ Ã»Á¤ ¿¬·á·Î »ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ȼ®¿¬·á ÀÇÁ¸µµ¸¦ ³·Ãß°í ¿î¼Û ºÎ¹®ÀÇ Å»Åº¼ÒÈ¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. À¯·´¿¡¼´Â À¯·´ ±×¸°µô ¹× ¼ö¼Ò Àü·«°ú °°Àº Á¤Ã¥ÀÌ ¹Ì·¡ ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Ãʼ®À¸·Î¼ ¼ö¼Ò¸¦ °·ÂÇÏ°Ô Áö¿øÇϰí ÀÖÀ¸¸ç, Àü·Â-°¡½º ±â¼úÀº ±×¸° ¼ö¼Ò »ý»ê¿¡ ÀÖÀ¸¸ç, Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ÀϺ»°ú Çѱ¹ µîÀÇ ±¹°¡¿¡¼´Â Á¤ºÎ ÁÖµµ·Î ¼ö¼Ò ±â¹Ý °æÁ¦°¡ ÃßÁøµÇ°í ÀÖÀ¸¸ç, Àü·Â-°¡½º ÇÁ·ÎÁ§Æ®¿¡ À¯¸®ÇÑ ±ÔÁ¦ ȯ°æÀÌ Á¶¼ºµÇ¾î ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¢±¹ÀÌ Àüü ¿¡³ÊÁö ¹Í½º¿¡¼ Àç»ý¿¡³ÊÁö ¹ßÀüÀÇ ºñÁßÀ» ´Ã¸®±â À§ÇØ ³ë·ÂÇϰí ÀÖ´Â °¡¿îµ¥, P2GÀÇ À׿© Àü·ÂÀ» ÀúÀåÇÏ°í ¼ö¿ä°¡ ÀûÀº ½Ã±â¿¡ Àç»ý °¡½º¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ¿¡³ÊÁö ½Ã½ºÅÛÀ» ¾ÈÁ¤ÈÇÏ°í ¼ÛÀü¸ÁÀÇ º¹¿ø·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î °£Áֵǰí ÀÖ½À´Ï´Ù.
Àü·Â-°¡½º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
P2G(Power-to-Gas) ½ÃÀåÀÇ ¼ºÀåÀº Àç»ý ¿¡³ÊÁöÀÇ ÅëÇÕ Áõ°¡, ¼ö¼Ò ±â¼úÀÇ ¹ßÀü, ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â Àü ¼¼°è ¿¡³ÊÁö ¹Í½º¿¡¼ Àç»ý¿¡³ÊÁöÀÇ ºñÀ²ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó À׿© Àü·ÂÀ» °ü¸®ÇÏ°í °èÅë ¾ÈÁ¤¼º ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ´õ °·ÂÇÑ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÏ´Ù´Â °ÍÀÔ´Ï´Ù. P2G(Power-to-Gas)´Â ÀÌ·¯ÇÑ À׿© Àç»ý Àü·ÂÀ» ÀúÀå °¡´ÉÇÑ °¡½º·Î º¯È¯ÇÏ´Â Çõ½ÅÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÏ¿© Àå±âÀûÀÎ ¿¡³ÊÁö ÀúÀåÀ» °¡´ÉÇÏ°Ô Çϰí Àü·Â¸Á ¼ö¿ä ¹× °ø±Þ ±ÕÇüÀ» À¯¿¬ÇÏ°Ô Á¶Á¤ÇÒ ¼ö ÀÖ´Â ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ Àü±âºÐÇØ¸¦ ÅëÇØ »ý»êµÈ ¼ö¼Ò´Â ¿î¼Û¿¡¼ »ê¾÷ °øÁ¤, ½ÉÁö¾î ÁÖÅà ³¹æ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÉ ¼ö ÀÖÀ¸¹Ç·Î ¼ö¼Ò °æÁ¦ÀÇ È®´ë´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò¿¬·áÀüÁö ±â¼úÀÌ ÁÖ·ù·Î ÀÚ¸® ÀâÀ¸¸é¼ Àü·Â-°¡½º ÀüȯÀ» ÅëÇØ »ý»êµÇ´Â ±×¸° ¼ö¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ¼ö¼Ò ÆÄÀÌÇÁ¶óÀÎ, ÀúÀå ½Ã¼³, ¿¬·á ÃæÀü¼Ò µî Áö¿ø ÀÎÇÁ¶óÀÇ ±¸ÃàÀº P2G ÇÁ·ÎÁ§Æ®ÀÇ ´ë±Ô¸ð È®»êÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¶Ç ´Ù¸¥ ÁÖ¿ä ¼ºÀå ¿äÀÎÀº Żź¼ÒÈ·ÎÀÇ ÀüȯÀ¸·Î, Àü ¼¼°è »ê¾÷°è¿Í Á¤ºÎ´Â Àü±âȰ¡ ¾î·Á¿î ºÎ¹®ÀÇ Åº¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. P2G(Power-to-Gas)´Â ģȯ°æ ¼ö¼Ò¿Í ÇÕ¼º ¸ÞźÀÇ »ý»êÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌµé ¸ðµÎ ö° »ý»ê, ÇØ¿î, Ç×°ø°ú °°Àº °í¿¡³ÊÁö ºÎ¹®¿¡¼ ȼ®¿¬·á¸¦ ´ëüÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀüÇØÁ¶ ºñ¿ëÀÌ °è¼Ó Ç϶ôÇϰí Àç»ý¿¡³ÊÁö ¹ßÀüÀÌ Àú·ÅÇØÁü¿¡ µû¶ó ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ Àü·Â-°¡½º ÀüȯÀÇ ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¼öÀÔ È¼®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ôÀº Áö¿ª¿¡¼´Â ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ¿¡³ÊÁöÀÇ Áö¿ª³» ¼Òºñ¸¦ °¡´ÉÇÏ°Ô ÇÏ°í ¿ÜºÎ ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß´Â P2GÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ÁÁÀº ±ÔÁ¦ ȯ°æ°ú ¼ö¼Ò ¹× Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ÇÔ²² ÇâÈÄ ¼ö³â°£ Àü·Â-°¡½º ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÎ¹®
±â¼ú(ÀüÇØ, ¸ÞźÈ), ¿ë·®(1000kW ÀÌ»ó, 100-999 kW, 100kW ¹Ì¸¸), ÃÖÁ¾ ¿ëµµ(À¯Æ¿¸®Æ¼, »ó¾÷, »ê¾÷)
Global Power-to-Gas Market to Reach US$89.0 Million by 2030
The global market for Power-to-Gas estimated at US$49.4 Million in the year 2023, is expected to reach US$89.0 Million by 2030, growing at a CAGR of 8.8% over the analysis period 2023-2030. Electrolysis Technology, one of the segments analyzed in the report, is expected to record a 9.2% CAGR and reach US$59.8 Million by the end of the analysis period. Growth in the Methanation Technology segment is estimated at 8.0% CAGR over the analysis period.
The U.S. Market is Estimated at US$13.7 Million While China is Forecast to Grow at 8.1% CAGR
The Power-to-Gas market in the U.S. is estimated at US$13.7 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$13.6 Million by the year 2030 trailing a CAGR of 8.1% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.2% and 7.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.9% CAGR.
Global Power-to-Gas Market - Key Trends & Drivers Summarized
How Is Power-to-Gas Technology Emerging As A Key Player In The Energy Transition?
Power-to-Gas (P2G) technology is rapidly gaining traction as a critical solution in the global energy transition, particularly as nations strive to meet ambitious carbon reduction goals and increase the integration of renewable energy sources into the grid. This innovative process allows for the conversion of surplus renewable energy, such as wind and solar power, into hydrogen or synthetic methane through electrolysis. By converting excess electricity into gas, Power-to-Gas offers an effective method for long-term energy storage and a way to address the intermittency issues associated with renewable energy sources. The growing capacity of wind and solar installations globally has intensified the need for such flexible energy storage solutions, as these renewable sources often generate power when demand is low or in unpredictable bursts. P2G not only helps balance the grid by storing excess energy but also provides a pathway for decarbonizing sectors that are difficult to electrify, such as heavy industry, heating, and transportation. Countries with strong renewable energy mandates, particularly in Europe and parts of Asia, are leading the way in adopting Power-to-Gas technology, recognizing its potential to complement the energy ecosystem and support the shift toward greener alternatives.
What Technological Advancements Are Shaping The Power-to-Gas Market?
Technological advancements in electrolyzer efficiency, gas storage, and distribution infrastructure are playing a pivotal role in accelerating the growth of the Power-to-Gas market. One of the key innovations driving this market is the development of more efficient and scalable electrolyzers, such as proton exchange membrane (PEM) electrolyzers, alkaline electrolyzers, and solid oxide electrolyzers. These technologies are becoming more cost-effective, energy-efficient, and capable of operating at larger scales, making the P2G process increasingly viable for widespread adoption. In particular, PEM electrolyzers, which are known for their rapid response times and ability to function efficiently at varying loads, are gaining favor as renewable energy sources such as wind and solar are inherently variable. Furthermore, advancements in hydrogen storage technologies, including high-pressure tanks and underground storage, are helping to overcome one of the key challenges in the Power-to-Gas process—storing large quantities of hydrogen safely and economically. The development of hydrogen transport infrastructure, such as pipelines and fueling stations, is also critical for connecting the production sites to end-users, particularly in industries such as transportation and manufacturing. Additionally, ongoing research into synthetic methane production, which allows for the use of existing natural gas infrastructure, is expanding the range of applications for Power-to-Gas technology, enhancing its potential to play a significant role in global energy systems.
How Are Policy Support And Environmental Goals Driving The Adoption Of Power-to-Gas?
Government policies and environmental regulations aimed at reducing greenhouse gas emissions and promoting renewable energy adoption are significant drivers of the Power-to-Gas market. Many countries have set ambitious targets for carbon neutrality, which require a dramatic reduction in emissions across all sectors of the economy. The versatility of Power-to-Gas technology makes it a valuable tool for achieving these goals, particularly in sectors where direct electrification is challenging, such as heavy transportation, steel manufacturing, and chemical production. For instance, hydrogen produced via P2G can be used as a clean fuel for vehicles, reducing the reliance on fossil fuels and helping to decarbonize the transportation sector. In Europe, policies such as the European Green Deal and the Hydrogen Strategy are providing strong support for hydrogen as a cornerstone of future energy systems, with Power-to-Gas technology playing a critical role in producing green hydrogen. Similarly, in countries like Japan and South Korea, government initiatives are promoting hydrogen-based economies, creating a favorable regulatory environment for Power-to-Gas projects. Furthermore, as nations seek to increase their share of renewable energy in the overall energy mix, the ability of P2G to store surplus electricity during periods of low demand and generate renewable gases is seen as an essential solution to stabilize energy systems and improve the resilience of the power grid.
What Factors Are Driving The Growth Of The Power-to-Gas Market?
The growth in the Power-to-Gas market is driven by several factors, including the increasing integration of renewable energy sources, advances in hydrogen technology, and growing demand for energy storage solutions. One of the primary drivers is the rising share of renewable energy in the global energy mix, which necessitates more robust solutions for managing excess power generation and addressing grid stability issues. Power-to-Gas offers an innovative way to convert this surplus renewable electricity into storable gas, allowing for long-term energy storage and providing a flexible mechanism to balance supply and demand in the power grid. Additionally, the expanding hydrogen economy is a key factor propelling market growth, as hydrogen produced via electrolysis can be used in a wide range of applications, from transportation to industrial processes, and even in residential heating. As hydrogen fuel cell technology becomes more mainstream, the demand for green hydrogen produced through Power-to-Gas is expected to increase significantly. Moreover, the development of supportive infrastructure, such as hydrogen pipelines, storage facilities, and fueling stations, is facilitating the deployment of P2G projects on a larger scale.
Another key growth driver is the shift towards decarbonization, with industries and governments worldwide focusing on reducing carbon emissions across sectors that are hard to electrify. Power-to-Gas provides a viable solution by enabling the production of green hydrogen or synthetic methane, both of which can replace fossil fuels in high-energy sectors like steel production, shipping, and aviation. Furthermore, technological advancements are making Power-to-Gas more cost-effective, as the cost of electrolyzers continues to decrease, and renewable energy becomes cheaper to generate. The increasing emphasis on energy security, especially in regions that are heavily reliant on imported fossil fuels, is also driving the adoption of P2G, as it offers a way to locally produce and store energy, reducing dependence on external energy sources. These factors, combined with favorable regulatory environments and growing investment in hydrogen and renewable energy projects, are expected to drive the Power-to-Gas market’s expansion in the coming years.
SCOPE OF STUDY:
The report analyzes the Power-to-Gas market in terms of US$ by the following Capacity; End-Use; Technology, and Geographic Regions/Countries:
Segments:
Technology (Electrolysis, Methanation); Capacity (1000 kW & Above, 100-999 kW, Less than 100 kW); End-Use (Utilities, Commercial, Industrial)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 37 Featured) -