![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1747690
¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼±¹Ú ½ÃÀåAutonomous Marine Vehicles |
¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼±¹Ú ½ÃÀåÀº 2030³â±îÁö 52¾ï ´Þ·¯¿¡ µµ´Þ
2024³â¿¡ 25¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚÀ²ÁÖÇà ¼±¹Ú ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 13.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 52¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ö»ó Â÷·®Àº CAGR 11.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 31¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼öÁß Â÷·® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 16.3%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 6¾ï 5,050¸¸ ´Þ·¯, Áß±¹Àº CAGR 12.6%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ÀÚÀ²ÁÖÇà ¼±¹Ú ½ÃÀåÀº 2024³â¿¡ 6¾ï 5,050¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8¾ï 1,660¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 12.6%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 12.0%¿Í 11.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 9.9%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ ÀÚÀ²ÁÖÇà ¼±¹Ú ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
ÀÚÀ²ÁÖÇà ¼±¹ÚÀÌ ÇØ»ó °¨½Ã, µ¥ÀÌÅÍ ¼öÁý, ¹æ¾î ÁغñÀÇ Àü·«Àû ¿øµ¿·ÂÀ¸·Î ºÎ»óÇϰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?
AMV´Â »ó¾÷, °úÇÐ, ±¹¹æ ºÐ¾ß¿¡¼ ¹«ÀÎ ÀÛÀüÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÇØ¾ç ȯ°æÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Ç×ÇØ, °¨Áö, °¨½Ã, °Ë»ç µîÀÇ ÀÛ¾÷À» »ç¶÷ ¾øÀÌ ¼öÇàÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾î ¿î¿µ ºñ¿ë°ú À§Çè ³ëÃâÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¾ÇÇÑ ÇØ¾ç ȯ°æÀ̳ª Á¢±ÙÇϱ⠾î·Á¿î ÇØ¾ç ȯ°æ¿¡¼µµ Àå½Ã°£ ÀÛµ¿ÇÒ ¼ö ÀÖ¾î ÇØ»ó ÀÛÀüÀ» Çö´ëÈÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
±¹¹æ ¹× ¾Èº¸ ºÐ¾ß¿¡¼ AMV´Â Á¤º¸ ¼öÁý, ´ëÀá¼öÇÔÀü, Áö·Ú °¨Áö¿¡ ºü¸£°Ô ÅëÇյǰí ÀÖ½À´Ï´Ù. ÇØ±º°ú ÇØ¾È°æºñ´ë´Â ÀÌ Â÷·®À» Ȱ¿ëÇÏ¿© ÀοøÀ» À§Çè¿¡ ºü¶ß¸®Áö ¾Ê°í ºÐÀï ÇØ¿ª¿¡¼ÀÇ »óȲ ÀνÄÀ» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. »ó¾÷¿ë ¿ëµµ¿¡¼ AMV´Â ÇØÀú ¸ÅÇÎ, ¼öÁß ÆÄÀÌÇÁ¶óÀÎ °Ë»ç, Ç׸¸ ¸ð´ÏÅ͸µ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¼®À¯ ¹× °¡½º, dz·Â ¹ßÀü ¼³ºñ µî ÇØ¾ç ÀÎÇÁ¶ó¸¦ Áö¿øÇÏ´Â AMVÀÇ ¿ªÇÒÀº Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.
¼¼°èÀûÀ¸·Î ÇØ¾ç µ¥ÀÌÅÍ ¼öÁý ¹× ȯ°æ ¸ð´ÏÅ͸µÀÌ È°¹ßÇØÁö¸é¼ AMVÀÇ º¸±ÞÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ Â÷·®Àº ¼ö¿Â, ¿°ºÐ, Á¶·ù, ÇØ¾ç »ý¹° ´Ù¾ç¼º¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ Áö¼ÓÀûÀ¸·Î ¼öÁýÇÏ¿© ±âÈÄ ¸ðµ¨¸µ, ¾î¾÷ °ü¸®, ¿À¿° ¹æÁö¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. °úÇÐ ¹× ȯ°æ ±â°üµéÀº »ýÅÂ°è ±³¶õÀ» ÃÖ¼ÒÈÇÏ¸é¼ ¿¬±¸¸¦ °¡¼ÓÈÇÏ°í ³ÐÀº Áö¿ª¿¡ °ÉÃÄ °íÇØ»óµµ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ¼öÁýÇϱâ À§ÇØ ÀÚÀ²Çü Ç÷§Æû¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù.
³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ, ¼¾¼ ÆäÀ̷εå, ¿¡³ÊÁö ¾ÆÅ°ÅØÃ³´Â AMVÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?
GPS, °ü¼ºÇ×¹ý½Ã½ºÅÛ(INS), LiDAR, ·¹ÀÌ´õ, ¼Ò³ª¸¦ ÅëÇÕÇÏ¿© ¿ªµ¿ÀûÀÎ ÇØ¾ç ȯ°æ¿¡¼ Á¤È®ÇÑ À§Ä¡ ÆÄ¾Ç°ú Àå¾Ö¹° ȸÇǰ¡ °¡´ÉÇϵµ·Ï ÇÏ´Â Ç×¹ý ¹× ÀÚÀ²¼º ±â¼ú ¹ßÀüÀÌ AMVÀÇ ´É·ÂÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú ÀûÀÀÇü Á¦¾î ·ÎÁ÷À» ÅëÇØ AMV´Â ±â»ó Á¶°Ç, ¼±¹Ú ±³Åë, ÀÓ¹«º° ½Ã³ª¸®¿À¿¡ ½Ç½Ã°£À¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚÀ² Ç×·Î °èȹ ¹× Ãæµ¹ ȸÇÇ ÇÁ·ÎÅäÄÝÀº ½Ã¾ß ¹Û ¹× ´ÙÁß Â÷·® ±ºÁý ¿îÇ×À» Áö¿øÇϱâ À§ÇØ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.
ÆäÀ̷εåÀÇ À¯¿¬¼ºÀº ´Ù¾çÇÑ ¿ëµµ¿¡ AMV¸¦ ¹èÄ¡ÇÏ´Â µ¥ ÀÖ¾î Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ¸ðµâ½Ä Ç÷§ÆûÀº ÇöÀç ¼ö·Î Á¶»ç, À½Çâ ¿ø°Ý ÃøÁ¤, ÈÇÐ ºÐ¼®À» À§ÇÑ ±³Ã¼ °¡´ÉÇÑ ¼¾¼ Á¦Ç°±ºÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó, »çÀÌµå ½ºÄµ ¼Ò³ª, ȯ°æ ¼¾¼´Â ÀÓ¹«ÀÇ Çʿ信 µû¶ó Á¶Á¤ÇÒ ¼ö ÀÖÀ¸¸ç, ½Ç½Ã°£ µ¥ÀÌÅÍ Àü¼Û ½Ã½ºÅÛ°ú ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü¼úÀû ¸ñÀû¿¡ µû¶ó ÀüÀÚÀü ½Ã½ºÅÛ, Åë½Å Áß°è±â, ¾î·Ú ¹× ¾î·Ú¿ë ÆäÀÌ·Îµå º£À̸¦ žÀçÇÒ ¼öµµ ÀÖ½À´Ï´Ù.
¿¡³ÊÁö °ü¸® ¶ÇÇÑ Æ¯È÷ Àå½Ã°£ ÀÓ¹«¸¦ À§ÇÑ ÁßÁ¡ ºÐ¾ßÀÔ´Ï´Ù. ÇÏÀ̺긮µå ÃßÁø ½Ã½ºÅÛ, ž籤 ¹ßÀü, ¿¬·áÀüÁö, ¹èÅ͸® ÃÖÀûÈ ±â¼úÀ» ÅëÇØ ¼öµ¿ ±ÞÀ¯ÀÇ Çʿ伺À» ÁÙÀÌ¸é¼ ³»±¸¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Áö»ó Â÷·®Àº ÅÂ¾ç¿ º¸Á¶ ÃæÀü ±â´ÉÀÇ ÇýÅÃÀ» ¹Þ°í, ¼öÁß Â÷·®Àº °í¹Ðµµ ¸®Æ¬ À̿ ¶Ç´Â ¾Ë·ç¹Ì´½ °ø±â ¹èÅ͸®¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. AMV´Â ½º¸¶Æ®ÇÑ ¿¡³ÊÁö ºÐ¹è Àü·«À» ÅëÇØ ÃßÁø·Â, ¼¾¼ »ç¿ë ¹× Åë½Å ¿ä±¸ »çÇ×ÀÇ ±ÕÇüÀ» À¯ÁöÇÏ¿© ¸î ÁÖ¿¡¼ ¸î ´Þ µ¿¾È ÀÓ¹«¸¦ Áö¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÚÀ²¿îÇ×¼±¹ÚÀÇ µµÀÔÀÌ °¡¼Óȵǰí ÀÖ´Â ÇØ¾ç ºÐ¾ß, ÀÌ¿ë »ç·Ê, ¿î¿ë ¿µ¿ªÀº?
±¹¹æ ¹× ÇØ¾ç ¾Èº¸ ºÐ¾ß´Â ¿©ÀüÈ÷ AMVÀÇ °¡Àå ¼º¼÷ÇÑ ½ÃÀåÀ¸·Î, ÁÖ¿ä ÇØ±ºÀÌ Á¤Âû, °¨½Ã ¹× ÇØÀúÀü ÀÓ¹«¿¡ AMV¸¦ ¹èÄ¡Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ² ¼ö»ó Â÷·®(ASV)°ú ÀÚÀ² ¼öÁß Â÷·®(AUV)Àº ¸ðµÎ µµ´Þ ¹üÀ§¸¦ È®ÀåÇϰí, Àΰ£ÀÇ ÇÇÆøÀ» ÁÙÀ̰í, ³×Æ®¿öÅ© Áß½É ÇØ±º ÀÛÀüÀ» Áö¿øÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Â÷·®µéÀº ¶ÇÇÑ ÇØ±º ÈÆ·Ã ½Ã¹Ä·¹À̼Ç, ¹Ì³¢ ¹èÄ¡, Ç׸¸ º¸¾È¿¡µµ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
»ó¾÷ ºÐ¾ß¿¡¼ AMV´Â ÇØ¾ç ¿¡³ÊÁö ȸ»ç, ÇØ¿î»ç, Ç׸¸ ´ç±¹¿¡ ÀÇÇØ äÅõǰí ÀÖ½À´Ï´Ù. AMV´Â ¼±Ã¼ °Ë»ç, ¼ö½É Á¶»ç, ¼öÁß ÀÎÇÁ¶ó À¯Áöº¸¼ö, ¹Ì·¡ÀÇ ½º¸¶Æ® Ç׸¸ ȯ°æ¿¡¼ÀÇ ÀÚÀ²Àû ÇÏ¿ª ÀÛ¾÷ µî ´Ù¾çÇÑ ÀÌ¿ë »ç·Ê¸¦ ÅëÇØ ½Â¹«¿ø ¼±¹Ú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í, º¸Çè Ã¥ÀÓÀ» ÁÙÀ̸ç, °íÀ§Çè Áö¿ª ¹× ½ÉÇØ¿¡¼ ¿ø°Ý Áø´ÜÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¾÷¹« È¿À²¼ºÀ» Áö¿øÇÕ´Ï´Ù. Áö¿øÇÕ´Ï´Ù.
ȯ°æ ¹× ¿¬±¸ ±â°üÀº ÇØ¾ç »ý¹°ÇÐ, ÇØ¾ç ÈÇÐ ¹× Áö±¸¹°¸®ÇÐ Á¶»ç¿¡¼ AMVÀÇ »ç¿ëÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ÇØ¾ç Æ÷À¯·ù À̵¿ ÃßÀûºÎÅÍ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¹× ¿Â½Ç°¡½º »ùÇøµ¿¡ À̸£±â±îÁö, AMV´Â ºñħ½ÀÀûÀÌ°í ¹Ýº¹ °¡´ÉÇÑ ¸ð´ÏÅ͸µÀ» À§ÇÑ È®Àå °¡´ÉÇÑ Ç÷§ÆûÀ» Á¦°øÇϸç, ƯÈ÷ ±ØÁö, ½ÉÇØ ÇØ±¸, Àç³ ´ëÀÀ Áö¿ª°ú °°ÀÌ À¯ÀΠŽ»ç°¡ ¾î·Æ°í, ºñ¿ëÀÌ ¸¹ÀÌ µé°í, À§ÇèÇÑ Áö¿ª¿¡ AMV¸¦ ¹èÄ¡ÇÏ´Â °ÍÀº °¡Ä¡°¡ ÀÖ½À´Ï´Ù. À§ÇèÇÑ Áö¿ª¿¡¼ Ȱ¿ë °¡Ä¡°¡ ÀÖ½À´Ï´Ù.
±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, »ê¾÷ ÄÁ¼Ò½Ã¾ö, ÀÌÁß »ç¿ë ÇÁ·Î±×·¥Àº ¾î¶»°Ô ½ÃÀå È®´ë¸¦ Çü¼ºÇϰí Àִ°¡?
±ÔÁ¦ Á¶Á¤Àº AMVÀÇ »ó¿ëȸ¦ ÃËÁøÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÌÀÚ º´¸ñÇö»óÀ̱⵵ ÇÕ´Ï´Ù. ±¹Á¦ÇØ»ç±â±¸(IMO)ÀÇ °¡À̵å¶óÀΰú °¢±¹ÀÇ ÇØ»ç ´ç±¹Àº ¹«Àμ±¹ÚÀÇ ÀÎÁõ, ±³Åë ºÐ¸® ü°è, Ã¥ÀÓ ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ëÇØ ³íÀÇÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ºÏÀ¯·´°ú ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡¿¡¼´Â ¾ÈÀü, »óÈ£¿î¿ë¼º, ±âÁ¸ ÇØ»ó ±³Åë°úÀÇ ÅëÇÕÀ» Æò°¡Çϱâ À§ÇØ ÅëÁ¦µÈ Á¶°Ç¿¡¼ º¹µµ ±â¹Ý ¹èÄ¡¸¦ ½ÃÇèÇÏ´Â ÆÄÀÏ·µ ÇÁ·Î±×·¥ÀÌ ½ÃÇàµÇ°í ÀÖ½À´Ï´Ù.
¾÷°è ÄÁ¼Ò½Ã¾ö°ú ¿©·¯ ÀÌÇØ°ü°èÀÚµéÀÇ Çù·ÂÀ» ÅëÇØ AMV ¼³°è ¹× ¿î¿µ Ç¥ÁØÈ, »óÈ£¿î¿ë¼º, ¸ð¹ü»ç·Ê¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇØ»ó ÀÚÀ²¿îÇ× ¼ö»óÇÔ(MASS) ±ÔÁ¦ ·Îµå¸Ê°ú Áö¿ª Å×½ºÆ®º£µå »ýŰè¿Í °°Àº ³ë·ÂÀº °³³äÁõ¸í Å×½ºÆ®¿Í ±â¼ú °ËÁõÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹æÀ§»ê¾÷ü, ÇØ¾ç ¿£Áö´Ï¾î¸µ ±â¾÷, ´ëÇÐ, ·Îº¿ ½ºÅ¸Æ®¾÷ °£ÀÇ ºÎ¹® °£ ÆÄÆ®³Ê½ÊÀº Çõ½Å ÆÄÀÌÇÁ¶óÀΰú °øµ¿ Á¶´Þ ¸ðµ¨À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÀÌÁß »ç¿ë ÇÁ·Î±×·¥Àº »ó¾÷¿ë°ú ±¹¹æ¿ë AMV ¿ëµµ¸¦ ¿¬°áÇÏ´Â µ¥ ƯÈ÷ ¿µÇâ·ÂÀÌ ÀÖ½À´Ï´Ù. ÇØ±º¿ëÀ¸·Î °³¹ßµÈ ±â¼ú(½ºÅÚ½º Ç¥¸é Ç×¹ý, ÇØÀú Åë½Å, ¾ÈÀüÇÑ ÀÓ¹« ÀÚÀ²¼º µî)Àº °úÇÐ ¹× »ó¾÷Àû Ž»ç¿¡ Àç»ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Å©·Î½º¿À¹ö´Â ±Ô¸ðÀÇ °æÁ¦, ÀúÀ§Çè R&D ÅõÀÚ, º¸´Ù ½Å¼ÓÇÑ ±ÔÁ¦ °æ·Î¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Á¤ºÎ Áö¿ø ÀÚ±Ý Á¶´Þ ¸ÞÄ¿´ÏÁò°ú ±¹¹æ Çõ½Å ÀÎÅ¥º£ÀÌÅÍ´Â »ó¾÷Àû ½ºÇɾƿô¿¡ Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
¸ðµâ½Ä ¼³°è, AI ±â¹Ý ÀÚÀ²¼º, ÇÔ´ë ÁöÇâÀû ¸í·É ½Ã½ºÅÛÀº ½ÃÀåÀÇ ÁøÈ¿¡ ¾î¶² ¿ªÇÒÀ» ÇÒ °ÍÀΰ¡?
¸ðµâ½Ä ¼±Ã¼ ¼³°è¿Í È®Àå °¡´ÉÇÑ ¼ÒÇÁÆ®¿þ¾î ¾ÆÅ°ÅØÃ³¸¦ ÅëÇØ AMV Ç÷§ÆûÀº ´Ù¾çÇÑ ÀÓ¹«¿Í ÆäÀ̷ε忡 ¸Â°Ô ½Å¼ÓÇÏ°Ô ±¸¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈµÈ ¸¶¿îÆÃ ½Ã½ºÅÛ°ú Ç÷¯±× ¾Ø Ç÷¹ÀÌ ÀüÀÚÀåºñ´Â ¸ÂÃãÈ ºñ¿ëÀ» Àý°¨Çϰí ÇÔ´ë ¼öÁØÀÇ ¹°·ù È¿À²¼ºÀ» Áö¿øÇÕ´Ï´Ù. °ø±Þ¾÷üµéÀº ÀÓ¹« ¼ÒÇÁÆ®¿þ¾î, Ç×¹ý ·ÎÁ÷, Çϵå¿þ¾î ¼¾¼¸¦ ¿î¿µÀÚ ¹× ÀÓ¹«º° ¿ä±¸»çÇ׿¡ µû¶ó À籸¼ºÇÒ ¼ö ÀÖ´Â °³¹æÇü ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³¸¦ Á¦°øÇÕ´Ï´Ù.
AI ±â¹Ý ÀÚÀ²¼ºÀº ±ÔÄ¢ ±â¹Ý ³í¸®¿¡¼ »óȲ¿¡ µû¸¥ ÀÇ»ç°áÁ¤ÀÌ °¡´ÉÇÑ ÇнÀ ±â¹Ý ¸ðµ¨·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Ç½Ã°£ ȯ°æ ÀÔ·Â ¹× À§Çù °¨Áö¸¦ ±â¹ÝÀ¸·Î ÀÓ¹« °èȹÀ» µ¿ÀûÀ¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®, Çൿ ¸ðµ¨¸µ, ±ºÁý Á¶Á¤ ¾Ë°í¸®ÁòÀº ÀÚÀ² ¿î¿µÀÇ Á¤±³ÇÔÀ» ³ôÀ̰í, ¿î¿µÀÚÀÇ °³ÀÔÀ» ÁÙÀ̸ç, ´Ù¾çÇÑ Á¶°Ç°ú Áö¿ª¿¡ °ÉÄ£ ÀÓ¹«ÀÇ È®À强À» Áö¿øÇÕ´Ï´Ù.
ÇÔ´ë ÁöÇâÀû ¸í·É ¹× Á¦¾î ½Ã½ºÅÛÀº µ¿½Ã¿¡ ÀÛµ¿ÇÏ´Â ¿©·¯ AMV¸¦ ÁýÁßÀûÀ¸·Î ¸ð´ÏÅ͸µÇϰí Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº À§¼º ¹× 5G Åë½Å, ¾ÏÈ£ÈµÈ ¿ø°Ý ÃøÁ¤, ½Ç½Ã°£ Áø´ÜÀ» ÅëÇÕ ´ë½Ãº¸µå¿¡ ÅëÇÕÇÏ¿© ¿î¿µÀÚ°¡ À°»ó ¹× Áö¿ø ¼±¹Ú¿¡¼ ÀÚÀ² ÀÚ»ê ¹«¸®¸¦ ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ´õ Å« ±Ô¸ðÀÇ ÁöÈÖ ±¸Á¶, ÇØ±º ¶Ç´Â »ê¾÷ ³×Æ®¿öÅ©¿ÍÀÇ »óÈ£ ¿î¿ë¼ºÀº Àü·«Àû °¡Ä¡¿Í ´ÙÁß ÀÓ¹«ÀÇ Áï°¢ÀûÀÎ ´ëÀÀ·ÂÀ» ´õ¿í Çâ»ó½Ãŵ´Ï´Ù.
ÀÚÀ²¿îÇ×¼±¹Ú ½ÃÀåÀÇ ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?
ÀÚÀ²¿îÇ×¼±¹Ú ½ÃÀåÀº ±â¼ú ¼º¼÷µµ, Àü·«Àû Çʿ伺, ¿î¿µ È¿À²¼ºÀÌ ±¹¹æ, ¿¬±¸, »ó¾÷¿ë ÇØ¾ç ºÎ¹® Àü¹Ý¿¡ °ÉÃÄ ¼ö·ÅµÇ¸é¼ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷·®Àº ¹«ÀÎ Ç×ÇØ, Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, µ¥ÀÌÅÍ ±â¹Ý Ž»ç µî »õ·Î¿î ¿µ¿ªÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù.
ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â ÇØ±º Çö´ëÈ ÅõÀÚ Áõ°¡, ÇØ¾ç ÀÎÇÁ¶ó ¸ð´ÏÅ͸µ, ȯ°æ Á¶»ç Àǹ«, ÇØ¾ç ÀÚÀ²¼º¿¡ ´ëÇÑ ±ÔÁ¦ Áö¿ø µîÀÌ ÀÖ½À´Ï´Ù. Ç×¹ý, Àü·Â ½Ã½ºÅÛ, AI, ¸ðµâÇü ÆäÀ̷εåÀÇ ¹ßÀüÀº Àü ¼¼°è ÇØ»ó ÀÛÀü¿¡¼ AMVÀÇ È®À强°ú ´ÙÀç´Ù´ÉÇÔÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ÇØ¾çÀ» Áß½ÉÀ¸·Î ÇÑ Àü·«ÀÌ ±¹°¡ ¾Èº¸, °úÇÐÀû ¹ß°ß, ¿¡³ÊÁö Áö¼Ó°¡´É¼º¿¡ ÇʼöÀûÀÎ °¡¿îµ¥, ÀÚÀ²ÁÖÇà ¼±¹ÚÀÌ Áö´ÉÇü ¹«ÀÎ ÇØ¾ç Áö¹èÀÇ ´ÙÀ½ ½Ã´ë¸¦ ÁÖµµÇÏ´Â ±âÃÊ ±â¼úÀÌ µÉ ¼ö ÀÖÀ»±î?
ºÎ¹®
À¯Çü(¼ö»ó ¼±¹Ú, ¼öÁß ¼±¹Ú), Å×Å©³î·¯Áö(¿µ»ó, ³»ºñ°ÔÀ̼Ç, Åë½Å, Ãæµ¹ ȸÇÇ, ÃßÁø·Â), ¿ëµµ(±º ¹× ¹æÀ§, °í°íÇÐ, Ž»ç, ¼®À¯ ¹× °¡½º, ȯ°æº¸È£ ¹× °¨½Ã, ±âŸ ¿ëµµ)
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.
Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.
2025³â 4¿ù: Çù»ó ´Ü°è
À̹ø 4¿ù º¸°í¼¿¡¼´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.
2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤
°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.
»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :
¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹
¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ® ±×·ìÀ» Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤À» Àû¿ëÇϰí ÀÖ½À´Ï´Ù.
Global Autonomous Marine Vehicles Market to Reach US$5.2 Billion by 2030
The global market for Autonomous Marine Vehicles estimated at US$2.5 Billion in the year 2024, is expected to reach US$5.2 Billion by 2030, growing at a CAGR of 13.3% over the analysis period 2024-2030. Surface Vehicles, one of the segments analyzed in the report, is expected to record a 11.4% CAGR and reach US$3.1 Billion by the end of the analysis period. Growth in the Underwater Vehicles segment is estimated at 16.3% CAGR over the analysis period.
The U.S. Market is Estimated at US$650.5 Million While China is Forecast to Grow at 12.6% CAGR
The Autonomous Marine Vehicles market in the U.S. is estimated at US$650.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$816.6 Million by the year 2030 trailing a CAGR of 12.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.0% and 11.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.9% CAGR.
Global Autonomous Marine Vehicles Market - Key Trends & Drivers Summarized
Why Are Autonomous Marine Vehicles Emerging as Strategic Enablers of Maritime Surveillance, Data Collection, and Defense Readiness?
Autonomous marine vehicles (AMVs), including surface and underwater variants, are reshaping the maritime landscape by enabling unmanned operations across commercial, scientific, and defense sectors. These systems are designed to perform navigation, sensing, surveillance, and inspection tasks without onboard human presence, significantly reducing operational costs and risk exposure. Their ability to operate for extended durations in harsh or inaccessible marine environments is positioning them as essential tools for modernizing maritime operations.
In defense and security, AMVs are being rapidly integrated for intelligence gathering, anti-submarine warfare, and mine detection. Navies and coast guards are leveraging these vehicles to expand situational awareness in contested waters without placing personnel in harm’s way. In commercial applications, AMVs are being deployed for seabed mapping, underwater pipeline inspection, and port monitoring-functions that demand precision, endurance, and minimal human intervention. Their role in supporting offshore infrastructure, particularly in oil, gas, and wind installations, is becoming increasingly critical.
The global push for oceanographic data collection and environmental monitoring is further driving AMV deployment. These vehicles can continuously gather data on water temperature, salinity, currents, and marine biodiversity-supporting climate modeling, fisheries management, and pollution control. Scientific institutions and environmental agencies are turning to autonomous platforms to collect high-resolution datasets over wide geographies, accelerating research while minimizing ecological disturbance.
How Are Navigation Systems, Sensor Payloads, and Energy Architectures Advancing AMV Performance?
Technological advancements in navigation and autonomy are central to AMV capability. Integration of GPS, inertial navigation systems (INS), LiDAR, radar, and sonar is enabling precise positioning and obstacle avoidance in dynamic marine environments. Machine learning algorithms and adaptive control logic allow AMVs to respond to weather conditions, vessel traffic, and mission-specific scenarios in real time. Autonomous path planning and collision avoidance protocols are evolving rapidly to support beyond-line-of-sight and multi-vehicle swarm operations.
Payload flexibility is a key factor in AMV deployment across varied applications. Modular platforms now support interchangeable sensor suites for hydrographic surveys, acoustic telemetry, and chemical analysis. High-definition cameras, side-scan sonars, and environmental sensors can be tailored to mission needs and integrated with real-time data transmission systems. Defense variants often incorporate electronic warfare systems, communications relays, or payload bays for torpedoes or mines, depending on tactical objectives.
Energy management is another focus area, particularly for extended missions. Hybrid propulsion systems, solar power harvesting, fuel cells, and battery optimization technologies are enhancing endurance while reducing the need for manual refueling. Surface vehicles benefit from solar-assisted recharge capabilities, while underwater vehicles rely on high-density lithium-ion or aluminum-air batteries. Smart energy allocation strategies are allowing AMVs to balance propulsion, sensor usage, and communication needs for mission continuity over several weeks or months.
Which Maritime Sectors, Use Cases, and Operational Theaters Are Accelerating Adoption of Autonomous Marine Vehicles?
The defense and maritime security sector remains the most mature market for AMVs, with major navies deploying them for reconnaissance, surveillance, and undersea warfare missions. Both autonomous surface vehicles (ASVs) and autonomous underwater vehicles (AUVs) are used to extend reach, reduce human exposure, and support network-centric naval operations. These vehicles are also used for naval training simulations, decoy deployment, and harbor security.
In the commercial sector, AMVs are being adopted by offshore energy companies, shipping operators, and port authorities. Use cases include hull inspections, bathymetric surveys, underwater infrastructure maintenance, and autonomous cargo handling in future smart port environments. AMVs support operational efficiency by reducing reliance on crewed vessels, lowering insurance liabilities, and enabling remote diagnostics in high-risk or deep-sea locations.
Environmental and research institutions are expanding the use of AMVs in marine biology, ocean chemistry, and geophysical studies. From tracking marine mammal migrations to sampling microplastics and greenhouse gases, AMVs provide a scalable platform for non-intrusive, repeatable monitoring. Their deployment is particularly valuable in polar regions, deep ocean trenches, and disaster response zones-areas that are difficult, expensive, or dangerous for manned expeditions.
How Are Regulatory Frameworks, Industry Consortia, and Dual-Use Programs Shaping Market Expansion?
Regulatory alignment is emerging as a key enabler and bottleneck in AMV commercialization. International Maritime Organization (IMO) guidelines and national maritime authorities are beginning to address certification, traffic separation schemes, and liability frameworks for unmanned vessels. Pilot programs in Nordic and Asia-Pacific countries are testing corridor-based deployments under controlled conditions to assess safety, interoperability, and integration with existing maritime traffic.
Industry consortia and multi-stakeholder collaborations are driving standardization, interoperability, and best practices for AMV design and operation. Initiatives such as the Maritime Autonomous Surface Ships (MASS) regulatory roadmap and regional testbed ecosystems are accelerating proof-of-concept trials and technology validation. Cross-sector partnerships between defense contractors, marine engineering firms, universities, and robotics startups are also fueling innovation pipelines and joint procurement models.
Dual-use programs are particularly influential in bridging commercial and defense AMV applications. Technologies developed for naval use-such as stealth surface navigation, undersea communications, and secure mission autonomy-are being repurposed for scientific and commercial exploration. This crossover enables economies of scale, de-risked R&D investment, and faster regulatory pathways. Government-backed funding mechanisms and defense innovation incubators are playing a catalytic role in commercial spinouts.
What Role Do Modular Design, AI-Driven Autonomy, and Fleet-Oriented Command Systems Play in Market Evolution?
Modular hull design and scalable software architectures are enabling AMV platforms to be rapidly configured for varied missions and payloads. Standardized mounting systems and plug-and-play electronics reduce customization costs and support fleet-level logistical efficiency. Vendors are increasingly offering open systems architectures that allow mission software, navigation logic, and hardware sensors to be reconfigured based on operator or mission-specific requirements.
AI-driven autonomy is advancing from rule-based logic to learning-based models capable of contextual decision-making. These systems can dynamically adjust mission plans based on real-time environmental inputs or threat detection. Predictive analytics, behavioral modeling, and swarm coordination algorithms are enhancing the sophistication of autonomous operations-reducing operator intervention and supporting mission scalability across diverse conditions and geographies.
Fleet-oriented command and control systems are allowing centralized oversight and coordination of multiple AMVs operating simultaneously. These platforms integrate satellite and 5G communications, encrypted telemetry, and real-time diagnostics into unified dashboards, enabling operators to monitor and manage swarms of autonomous assets from shore or support vessels. Interoperability with larger command structures and naval or industrial networks is further enhancing strategic value and multi-mission readiness.
What Are the Factors Driving Growth in the Autonomous Marine Vehicles Market?
The autonomous marine vehicles market is expanding rapidly as technology maturity, strategic imperatives, and operational efficiency converge across defense, research, and commercial maritime sectors. These vehicles are unlocking new frontiers in unmanned navigation, persistent monitoring, and data-rich exploration.
Key growth drivers include rising investment in naval modernization, offshore infrastructure monitoring, environmental research mandates, and regulatory support for maritime autonomy. Advances in navigation, power systems, AI, and modular payloads are further propelling the scalability and versatility of AMVs across global maritime operations.
As ocean-centric strategies become integral to national security, scientific discovery, and energy sustainability, could autonomous marine vehicles become the cornerstone technology driving the next era of intelligent, unmanned maritime dominance?
SCOPE OF STUDY:
The report analyzes the Autonomous Marine Vehicles market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (Surface Vehicles, Underwater Vehicles); Technology (Imaging, Navigation, Communication, Collision Avoidance, Propulsion); Application (Military & Defense, Archeological, Exploration, Oil & Gas, Environmental Protection & Monitoring, Other Applications)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 42 Featured) -
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.
We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.
We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.
As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.
To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!
APRIL 2025: NEGOTIATION PHASE
Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.
JULY 2025 FINAL TARIFF RESET
Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.
Reciprocal and Bilateral Trade & Tariff Impact Analyses:
USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.
Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.
COMPLIMENTARY PREVIEW
Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.