![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1758880
¼¼°èÀÇ Ã·´Ü ±â´É¼º Àç·á ½ÃÀåAdvanced Functional Materials |
÷´Ü ±â´É¼º Àç·á ¼¼°è ½ÃÀåÀº 2030³â±îÁö 1,705¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 1,066¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÷´Ü ±â´É¼º Àç·á ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,705¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ º¹ÇÕÀç·á´Â CAGR 9.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 751¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼¶ó¹Í ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 5.5%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 280¾ï ´Þ·¯, Áß±¹Àº CAGR 7.8%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ Ã·´Ü ±â´É¼º Àç·á ½ÃÀåÀº 2024³â¿¡ 280¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 272¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.8%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.6%¿Í 6.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 6.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ Ã·´Ü ±â´É¼º Àç·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
÷´Ü ±â´É¼º Àç·á°¡ ½ÅÈï ±â¼ú, Áö¼Ó°¡´ÉÇÑ Á¦Á¶, °í¼º´É ¿£Áö´Ï¾î¸µ¿¡¼ Àü·«Àû Á߿伺ÀÌ ³ô¾ÆÁö´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?
÷´Ü ±â´É¼º Àç·á(AFM)´Â ¿ì¼öÇÑ ±â°èÀû, ¿Àû, Àü±âÀû, ÀÚ±âÀû, ±¤ÇÐÀû Ư¼ºÀ» ¹ßÈÖÇϵµ·Ï ¼³°èµÇ¾î ±âÁ¸ ¼ÒÀçÀÇ ´É·ÂÀ» ¶Ù¾î³Ñ´Â ƯÁ¤ ±â´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, °¡Àü, ¿¡³ÊÁö ÀúÀå, °ÇÃà, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼ Çõ½ÅÀ» µÞ¹ÞħÇÏ¸ç ´õ °¡º±°í, ´õ °Çϰí, ´õ È¿À²ÀûÀ̰í, ´õ Áö¼Ó°¡´ÉÇÑ ÃÖÁ¾ Á¦Ç°À» ½ÇÇöÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è »ê¾÷ÀÌ ¼ÒÇüÈ, ÀÚµ¿È, Żź¼ÒÈ Ãß¼¼¿¡ µû¶ó Á¤¹Ð¼º, º¹¿ø·Â, ´Ù±â´É¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â ÀÀ¿ë ºÐ¾ß¿¡¼ AFM¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¸ðºô¸®Æ¼ÀÇ Àüµ¿È, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ, ½º¸¶Æ® ÀÎÇÁ¶ó·ÎÀÇ ÀüȯÀ¸·Î Àüµµ¼º °íºÐÀÚ, »óº¯È Àç·á, Çü»ó±â¾ï ÇÕ±Ý, ¾ÐÀü ¼¼¶ó¹Í, ³ª³ë ±¸Á¶ º¹ÇÕÀç·á µîÀÇ Àç·áÀÇ ¿ªÇÒÀÌ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ¿¡³ÊÁö º¯È¯, ±¸Á¶ º¸°, ÀÚ°¡ º¹±¸, µ¥ÀÌÅÍ Àü¼Û µîÀÇ Áß¿äÇÑ ±â´ÉÀ» Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ÀåÄ¡ÀÇ Áö´É, ½Ã½ºÅÛ ³»±¸¼º, ³ôÀº ½ºÆ®·¹½º¿Í ¿ªµ¿ÀûÀΠȯ°æ¿¡¼ Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
Á¤ºÎ¿Í ±â¾÷ ¸ðµÎ ±â¼ú ÁÖ±Ç, ±âÈÄ º¯È ´ëÀÀ, °ø±Þ¸Á º¹¿ø·Â¿¡ ÃÊÁ¡À» ¸ÂÃá ±¹°¡ Àü·« ÀÌ´Ï¼ÅÆ¼ºêÀÇ ÀÏȯÀ¸·Î ¼ÒÀç Çõ½Å¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, AFMÀº ´õ ÀÌ»ó Æ´»õ ¿ëµµ¿¡ ±¹ÇѵÇÁö ¾Ê°í ¼º´É, ¼ö¸í, Áö¼Ó°¡´É¼ºÀÌ ±³Â÷ÇÏ´Â Â÷¼¼´ë Á¦Á¶ »ýŰèÀÇ ±â¹ÝÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
³ª³ë±â¼ú, ÀûÃþ °¡°ø, ¿øÇü°æÁ¦ÀÇ ¿ø¸®´Â ¾î¶»°Ô AFMÀÇ °³¹ßÀ» ÃËÁøÇϰí Àִ°¡?
³ª³ë±â¼úÀº ¿øÀÚ ¹× ºÐÀÚ ¼öÁØÀÇ Á¦¾î¸¦ °¡´ÉÇϰÔÇÔÀ¸·Î½á AFMÀÇ ´É·ÂÀ» º¯È½Ã۰í ÀÖÀ¸¸ç, Àü·Ê ¾ø´Â Ç¥¸éÀû, Àüµµ¼º ¹× ¹ÝÀÀ¼ºÀ» °¡Áø Àç·á¸¦ ¸¸µé¾î³»°í ÀÖ½À´Ï´Ù. ±×·¡ÇÉ, ź¼Ò³ª³ëÆ©ºê, ¾çÀÚÁ¡ µîÀÇ ³ª³ë¼ÒÀç´Â ¹èÅ͸®, ¹ÙÀÌ¿À¼¾¼, ÄÚÆÃ, Ç÷º¼ºí ÀüÀÚÁ¦Ç°¿¡ ÅëÇյǾî Àç·áÀÇ Áú·®À» ÁÙÀÌ¸é¼ ¼º´É ÆÄ¶ó¹ÌÅ͸¦ ȹ±âÀûÀ¸·Î °³¼±Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Á¶Àý °¡´ÉÇÑ Àü±â Àüµµ¼º, ¼±ÅÃÀû Åõ°ú¼º, ±¤ÇÐÀû °Åµ¿ µî ÇÁ·ÐƼ¾î ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇʼöÀûÀÎ »õ·Î¿î ±â´É¼ºÀ» ±¸ÇöÇϰí ÀÖ½À´Ï´Ù.
ÀûÃþ °¡°ø(AM) ¶Ç´Â 3D ÇÁ¸°ÆÃÀº AFMÀÇ °¡°ø ¹æ¹ýÀ» À籸¼ºÇÏ¿© Á¤¹ÐÇÑ Çü»ó, ÃÖ¼ÒÀÇ Æó±â¹°, ¸ÂÃãÇü ¼ÒÀç ±×¶óµ¥À̼ÇÀ» °¡´ÉÇÏ°Ô Çϸç, AMÀº ±âÁ¸ÀÇ Á¦Á¶ ¹æ¹ýÀ¸·Î´Â ÇѰ谡 ÀÖ´Â Ç×°ø¿ìÁÖ, ¹æÀ§, »ýÀÇÇÐ ºÐ¾ß¿¡¼ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇΰú ¸ÂÃã Á¦ÀÛÀ» Áö¿øÇÕ´Ï´Ù. Àμ⠰¡´ÉÇÑ ¿Àü ÈÇÕ¹°, ¾ÐÀü À×Å©, »ýüÈí¼ö¼º Æú¸®¸Ó µî AM Àü¿ëÀ¸·Î ¼³°èµÈ AFMÀº ÁÖ¹®Çü »ý»ê ¹× ÀåÄ¡ ÅëÇÕÀÇ ¹üÀ§¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ Çõ½ÅÀÇ ÃßÁøÀ¸·Î Àç·á°úÇÐÀº Æó¼âÇü ·çÇÁ ¸ðµ¨À» ÇâÇØ ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. ÀçȰ¿ë °¡´ÉÇÑ º¹ÇÕÀç·á, »ýºÐÇØ¼º °íºÐÀÚ, ÀÚ°¡ Àç»ý Àç·á´Â Á¦Ç° ¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÃÄ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¼øÈ¯ °æÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ÀÚ¿ø È¿À²¼º, »ç¿ë ÈÄ È¸¼ö, ¾ÈÀüÇÑ ºÐÇØ¸¦ ¿ì¼±½ÃÇÏ´Â AFM ¿¬±¸¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿øÄ¢Àº ºñ¿ë Áß½ÉÀÇ ¼º´É¿¡¼ Ã¥ÀÓ Áß½ÉÀÇ ¼º´ÉÀ¸·Î ÀüȯÀ» À¯µµÇϰí Àç·á Çõ½ÅÀ» ESG ¹× ±ÔÁ¦ ¿ä±¸»çÇ׿¡ ºÎÇÕÇÏ´Â Àç·á Çõ½ÅÀ¸·Î À̲ø°í ÀÖ½À´Ï´Ù.
¾î¶² ÀÀ¿ë ºÐ¾ß, ÃÖÁ¾»ç¿ëÀÚ »ê¾÷, Áö¿ª Ŭ·¯½ºÅͰ¡ ÷´Ü ±â´É¼º Àç·áÀÇ º¸±ÞÀ» ÁÖµµÇϰí Àִ°¡?
¿¡³ÊÁö ÀúÀå ¹× º¯È¯ ½Ã½ºÅÛÀº AFMÀÇ °¡Àå Å©°í ºü¸£°Ô ¼ºÀåÇÏ´Â ¼ÒºñÀÚ Áß ÇϳªÀÔ´Ï´Ù. ¸®Æ¬À̿ ¹èÅ͸® ¹× °íü ¹èÅ͸®¿ë ÷´Ü ¾ç±Ø ¹× À½±Ø Àç·á, °íÈ¿À² ¿Àü Àç·á, žçÀüÁö¿ë Æä·Îºê½ºÄ«ÀÌÆ®´Â ûÁ¤¿¡³ÊÁö ¹× Àü·Â¸Á º¹¿ø·ÂÀÇ È¹±âÀûÀÎ ¹ßÀüÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°, ƯÈ÷ ¿þ¾î·¯ºí, Á¢À̽Ä, AR/VR µð¹ÙÀ̽º´Â Ç÷º¼ºí ±âÆÇ, Åõ¸í µµÃ¼, ÀüÀÚÆÄ Â÷ÆóÀ縦 Ȱ¿ëÇÏ¿© ÆûÆÑÅÍ¿Í ±â´É¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.
ÇコÄÉ¾î ºÐ¾ß¿¡¼ AFMÀº »ýüȰ¼º ÀÓÇöõÆ®, ¾à¹° ¿ëÃâ ÄÚÆÃ, ¹ÝÀÀ¼º ÇÏÀ̵å·Î°Ö, Áø´Ü ·¦¿ÂĨ Ç÷§Æû°ú °°Àº Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷°ú Ç×°ø¿ìÁÖ »ê¾÷Àº ¾ö°ÝÇÑ ¹èÃâ ±âÁØ, ¿¬ºñ ¸ñÇ¥ ¹× ±¸Á¶Àû ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ °æ·® º¹ÇÕÀç·á¿Í ³»¿ ¼¼¶ó¹ÍÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. °Ç¼³ ¹× ½º¸¶Æ® ÀÎÇÁ¶ó´Â ¿ Á¶ÀýÀ» À§ÇÑ »ó º¯È Àç·á, ¼¿ÇÁ Ŭ¸®´× Ç¥¸é, Àå±âÀûÀÎ À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÏ´Â ºÎ½Ä ¹æÁö ÄÚÆÃÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì¿Í À¯·´Àº ÀÏ·ù ´ëÇÐ, ÷´Ü Á¦Á¶ ±âÁö, °·ÂÇÑ ÁöÀûÀç»ê±Ç »ýŰ踦 ¹ÙÅÁÀ¸·Î AFM ¿¬±¸¿Í »ó¿ëȸ¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹Àº ´ë±Ô¸ð Á¦Á¶ ¿ª·®°ú Á¤ºÎ ÁÖµµÀÇ Çõ½Å ÇÁ·Î±×·¥À» ÅëÇØ ÀüÀÚ ¹× ¿¡³ÊÁö ÀÀ¿ë ºÐ¾ß¿¡¼ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ß °µµ, ¿øÀÚÀç °¡¿ë¼º, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ Áö¿ªÀû °ÝÂ÷´Â Àü ¼¼°èÀûÀ¸·Î AFM äÅÃÀÇ ´Ù¾çÇÑ ±ËÀûÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
÷´Ü ±â´É¼º Àç·á´Â »ê¾÷ À¶ÇÕ, Áö¼Ó°¡´É¼º, ±â¼ú Çõ½ÅÀÇ ´ÙÀ½ ¹°°áÀ» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î ¾î¶² Àü·«Àû ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ»±î?
÷´Ü ±â´É¼º Àç·á´Â Àç·á°úÇÐÀÌ ¼³°è ÀÇ¿å°ú ¿£Áö´Ï¾î¸µ Çö½Ç »çÀÌÀÇ Áß¿äÇÑ Á¢Á¡ÀÌ µÇ´Â »õ·Î¿î À¶ÇÕÀû Çõ½ÅÀÇ ½Ã´ë¸¦ Ã˸ÅÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù. µðÁöÅÐ Àüȯ, Àüµ¿È, ¼øÈ¯¼ºÀÌ À¶Çյʿ¡ µû¶ó AFMÀº ÁøÈÇÏ´Â »çȸÀû, ȯ°æÀû ¿ä±¸¿¡ ºÎÀÀÇÏ´Â º¸´Ù ½º¸¶Æ®ÇÏ°í ±ú²ýÇϸç ź·ÂÀûÀÎ Á¦Ç°À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
AFMÀ» AI ±â¹Ý Àç·á Ž»ö Ç÷§Æû, µðÁöÅÐ Æ®À©, Áö´ÉÇü Á¦Á¶ ½Ã½ºÅÛ°ú ÅëÇÕÇÏ¿© ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÏ°í °³¹ß À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AFMÀº ȯ°æ ¹× ¿î¿µ»óÀÇ ½ºÆ®·¹½º ¿äÀÎÀ» °¨ÁöÇϰí ÀÌ¿¡ ¹ÝÀÀÇϰí ȸº¹ÇÒ ¼ö ÀÖ´Â ÀûÀÀÇü ½Ã½ºÅÛÀ» Áö¿øÇÏ¿© ÀÚÀ²¼º°ú ¼ö¸íÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸Æ¶ô¿¡¼ Àç·á´Â ´õ ÀÌ»ó ¼öµ¿ÀûÀÎ ¿¡³ÊÁö¿øÀÌ ¾Æ´Ï¶ó Áö´ÉÀûÀÌ°í ³×Æ®¿öÅ©ÈµÈ »ýŰèÀÇ ´Éµ¿ÀûÀÎ Âü¿©ÀÚÀÔ´Ï´Ù.
Àü ¼¼°è »ê¾÷°è°¡ Çõ½Å°ú Áö¼Ó°¡´É¼ºÀÇ ±ÕÇüÀ» ¸ð»öÇÏ´Â °¡¿îµ¥, ÷´Ü ±â´É¼º Àç·á°¡ ´Ü¼øÈ÷ ¹°Áú ÀÚüÀÇ ±â´É»Ó¸¸ ¾Æ´Ï¶ó Àΰ£°ú Áö±¸ÀÇ ÇÊ¿ä¿Í Á¶È¸¦ ÀÌ·ç¸ç »ç°íÇϰí, ÀûÀÀÇϰí, Àç»ýÇϵµ·Ï ¼³°èµÈ Áö´ÉÇü ¼ÒÀçÀÇ Ãʼ®ÀÌ µÉ ¼ö ÀÖÀ»±î?
ºÎ¹®
Á¦Ç° À¯Çü(º¹ÇÕÀç·á, ¼¼¶ó¹Í, ¿¡³ÊÁö Àç·á, ³ª³ëÀç·á, Àüµµ¼º Æú¸®¸Ó)
AI ÅëÇÕ
¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Global Advanced Functional Materials Market to Reach US$170.5 Billion by 2030
The global market for Advanced Functional Materials estimated at US$106.6 Billion in the year 2024, is expected to reach US$170.5 Billion by 2030, growing at a CAGR of 8.1% over the analysis period 2024-2030. Composites, one of the segments analyzed in the report, is expected to record a 9.3% CAGR and reach US$75.1 Billion by the end of the analysis period. Growth in the Ceramics segment is estimated at 5.5% CAGR over the analysis period.
The U.S. Market is Estimated at US$28.0 Billion While China is Forecast to Grow at 7.8% CAGR
The Advanced Functional Materials market in the U.S. is estimated at US$28.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$27.2 Billion by the year 2030 trailing a CAGR of 7.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.6% and 6.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.4% CAGR.
Global Advanced Functional Materials Market - Key Trends & Drivers Summarized
Why Are Advanced Functional Materials Gaining Strategic Importance Across Emerging Technologies, Sustainable Manufacturing, and High-Performance Engineering?
Advanced functional materials (AFMs) are engineered to exhibit superior mechanical, thermal, electrical, magnetic, or optical properties, enabling them to perform specific functions beyond traditional material capabilities. These materials underpin innovations across sectors including aerospace, automotive, consumer electronics, energy storage, construction, and healthcare-acting as enablers of lighter, stronger, more efficient, and more sustainable end-products. As global industries move toward miniaturization, automation, and decarbonization, demand for AFMs is accelerating in applications requiring precision, resilience, and multifunctionality.
The transition to electrified mobility, renewable energy systems, and smart infrastructure has significantly expanded the role of materials like conductive polymers, phase-change materials, shape-memory alloys, piezoelectric ceramics, and nanostructured composites. These materials support critical functions such as energy conversion, structural reinforcement, self-healing, and data transmission. They are vital to enhancing device intelligence, system durability, and overall energy efficiency in high-stress or dynamic environments.
Governments and corporations alike are investing in material innovation as part of strategic national initiatives focused on technological sovereignty, climate action, and supply chain resilience. As a result, AFMs are no longer confined to niche applications-they are forming the foundation of next-generation manufacturing ecosystems, where performance, longevity, and sustainability intersect.
How Are Nanotechnology, Additive Manufacturing, and Circular Economy Principles Advancing the Development of AFMs?
Nanotechnology is transforming AFM capabilities by enabling control at the atomic and molecular level, resulting in materials with unprecedented surface area, conductivity, and reactivity. Nanomaterials such as graphene, carbon nanotubes, and quantum dots are being integrated into batteries, biosensors, coatings, and flexible electronics, dramatically improving performance parameters while reducing material mass. These innovations are unlocking new functionalities-such as tunable electrical conductivity, selective permeability, and photonic behavior-that are critical for frontier applications.
Additive manufacturing (AM), or 3D printing, is reshaping how AFMs are processed, allowing for precise geometries, minimal waste, and tailored material gradients. AM supports rapid prototyping and customization in aerospace, defense, and biomedical fields where traditional fabrication methods are limited. AFMs designed specifically for AM-such as printable thermoelectric compounds, piezoelectric inks, or bioresorbable polymers-are expanding the scope of on-demand production and device integration.
The drive for sustainable innovation is pushing material science toward closed-loop models. Recyclable composites, biodegradable polymers, and self-regenerating materials are being developed to reduce environmental impact across product life cycles. Circular economy frameworks are encouraging AFM research that prioritizes resource efficiency, end-of-life recovery, and safe degradation. These principles are guiding the shift from performance-at-any-cost to performance-with-responsibility, aligning materials innovation with ESG and regulatory mandates.
Which Application Verticals, End-User Industries, and Regional Clusters Are Leading the Uptake of Advanced Functional Materials?
Energy storage and conversion systems are among the largest and fastest-growing consumers of AFMs. Advanced cathode and anode materials for lithium-ion and solid-state batteries, high-efficiency thermoelectric materials, and perovskites for solar cells are driving breakthroughs in clean energy and grid resilience. Consumer electronics-especially wearables, foldables, and AR/VR devices-rely on flexible substrates, transparent conductors, and electromagnetic shielding materials to enhance form factor and functionality.
In the healthcare domain, AFMs enable innovations such as bioactive implants, drug-eluting coatings, responsive hydrogels, and diagnostic lab-on-a-chip platforms. Automotive and aerospace industries are integrating lightweight composites and heat-resistant ceramics to meet stringent emission standards, fuel efficiency targets, and structural demands. Construction and smart infrastructure benefit from phase-change materials for thermal regulation, self-cleaning surfaces, and corrosion-resistant coatings that reduce long-term maintenance costs.
North America and Europe lead in AFM research and commercialization, supported by top-tier universities, advanced manufacturing hubs, and strong IP ecosystems. Asia-Pacific, particularly China, Japan, and South Korea, commands significant market share in electronics and energy applications due to large-scale manufacturing capacity and government-led innovation programs. Regional disparities in R&D intensity, raw material availability, and regulatory frameworks are shaping diverse trajectories for AFM adoption worldwide.
What Strategic Role Will Advanced Functional Materials Play in Driving Industrial Convergence, Sustainability, and the Next Wave of Technological Breakthroughs?
Advanced functional materials are poised to catalyze a new era of cross-disciplinary innovation, where materials science serves as the critical interface between design ambition and engineering reality. As digital transformation, electrification, and circularity converge, AFMs will enable smarter, cleaner, and more resilient products that meet evolving societal and environmental demands.
The integration of AFMs with AI-driven materials discovery platforms, digital twins, and intelligent manufacturing systems will accelerate time-to-market and reduce developmental risk. They will also underpin adaptive systems that can sense, respond to, and heal from environmental or operational stressors, enhancing autonomy and lifespan. In this context, materials are no longer passive enablers but active participants in intelligent, networked ecosystems.
As global industries seek to balance innovation with sustainability, could advanced functional materials become the cornerstone of a material-intelligent future-where matter itself is engineered not only to perform, but also to think, adapt, and regenerate in harmony with human and planetary needs?
SCOPE OF STUDY:
The report analyzes the Advanced Functional Materials market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Product Type (Composites, Ceramics, Energy Materials, Nanomaterials, Conductive Polymers)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 41 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.