![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791556
¼¼°èÀÇ Ä¸Æ¼ºê ÄɹÌÄà ¼ö¼Ò »ý¼º ½ÃÀåCaptive Chemical Hydrogen Generation |
¼¼°èÀÇ Ä¸Æ¼ºê ÄɹÌÄà ¼ö¼Ò »ý¼º ½ÃÀåÀº 2030³â±îÁö 1,191¾ï ´Þ·¯¿¡ µµ´Þ
2024³â¿¡ 851¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ĸƼºê ÄɹÌÄà ¼ö¼Ò »ý¼º ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 5.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,191¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼öÁõ±â °³Áú ÇÁ·Î¼¼½º´Â CAGR 6.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 738¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀüÇØ ÇÁ·Î¼¼½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 5.2%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 224¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR5.6%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ Ä¸Æ¼ºê ÄɹÌÄà ¼ö¼Ò »ý¼º ½ÃÀåÀº 2024³â¿¡ 224¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 192¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 5.6%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 5.5%¿Í 4.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 4.6%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ Ä¸Æ¼ºê ÄɹÌÄà ¼ö¼Ò »ý¼º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
ÈÇо÷üµéÀÌ ¼ö¼Ò »ý»ê¿¡ ÅõÀÚÇÏ´Â ÀÌÀ¯
ÈÇÐ ºÎ¹®ÀÇ ¼ö¼Ò °ø±Þ ¿ªÇÐÀº ºü¸£°Ô º¯ÈÇϰí ÀÖÀ¸¸ç, ´õ ¸¹Àº ±â¾÷µéÀÌ Á¦3ÀÚ °ø±Þ¾÷ü¿¡ ÀÇÁ¸ÇÏ´ø ¹æ½Ä¿¡¼ ÀÚüÀûÀ¸·Î ¼ö¼Ò¸¦ »ý»êÇÏ´Â ¹æ½ÄÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû ÀüȯÀº ½Å·Ú¼º, ºñ¿ë ÃÖÀûÈ, ¿î¿µ °ü¸® °È¿¡ ´ëÇÑ ¿ä±¸°¡ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¼ö¼Ò´Â ¾Ï¸ð´Ï¾Æ, ¸Þź¿Ã, °ú»êȼö¼Ò, °¢Á¾ Ư¼ö ÈÇÐÁ¦Ç°ÀÇ Á¦Á¶¸¦ Æ÷ÇÔÇÑ ±¤¹üÀ§ÇÑ ÈÇÐ °øÁ¤¿¡ ÇʼöÀûÀÎ ¿ø·áÀÔ´Ï´Ù. ¼ö¼Ò °ø±ÞÀÌ Áß´ÜµÇ¸é »ý»ê ¶óÀÎÀÌ ÁߴܵǾî Å« ¼Õ½ÇÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Æ÷ȹÇü ¼ö¼Ò »ý»êÀº ÈÇÐ Á¦Á¶¾÷ü°¡ ¼øµµ¿Í À¯·® ¿ä±¸ »çÇ׿¡ µû¶ó ÀϰüµÈ °ø±ÞÀ» ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÇöÀå ½Ã½ºÅÛÀº ¿î¼Û ºñ¿ëÀ» ÃÖ¼ÒÈÇϰí, °ø±Þ¸Á Áß´ÜÀÇ À§ÇèÀ» ÇÇÇϰí, ´ë·® ÀúÀå ¹× °í¾Ð ¿î¼ÛÀÇ Çʿ伺À» Á¦°ÅÇÏ¿© °ø±Þ¸Á Áß´ÜÀÇ À§ÇèÀ» ¹æÁöÇÕ´Ï´Ù. ƯÈ÷ Àú°¡ÀÇ Ãµ¿¬°¡½º³ª Àç»ý °¡´ÉÇÑ Àü·ÂÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ´Â Áö¿ª¿¡¼´Â ´õ¿í ±×·¸´Ù. ¶ÇÇÑ, ¼¼°è ÈÇÐ »ê¾÷ÀÌ Å»Åº¼ÒÈ ¾Ð·Â¿¡ Á÷¸éÇÑ °¡¿îµ¥, ÇöÀå ¹ßÀüÀº ź¼Ò Æ÷Áý ¹× ÅëÇÕ Àü±â ºÐÇØ ¶Ç´Â û»ö ¼ö¼Ò¹ýÀ» ÅëÇØ ´õ Ŭ¸° ¼ö¼Ò·Î ÀüȯÇÏ´Â °æ·Î¸¦ Á¦½ÃÇÕ´Ï´Ù. ĸƼºê ½Ã½ºÅÛÀº ¶ÇÇÑ Àüü »ý»ê ½Ã¼³ÀÇ ¿¡³ÊÁö ÅëÇÕÀ» °³¼±Çϰí, Æó¿À» Ȱ¿ëÇϸç, À¯Æ¿¸®Æ¼ ¼Òºñ¸¦ ÃÖÀûÈÇÕ´Ï´Ù. ÆÄÀÌÇÁ¶óÀÎ ÀÎÇÁ¶ó°¡ Á¦ÇÑµÈ ¿Üµý Áö¿ªÀ̳ª ½ÅÈï »ê¾÷ Áö¿ª¿¡¼ ¿î¿µµÇ´Â ÈÇÐ Ç÷£Æ®ÀÇ °æ¿ì, ĸƼºê ¹ßÀüÀº È®À强À̳ª ½Å·Ú¼ºÀ» ÀúÇϽÃŰÁö ¾ÊÀ¸¸é¼ °øÁ¤ ¿ä°ÇÀ» ÃæÁ·½Ãų ¼ö ÀÖ´Â À¯ÀÏÇÑ ¹æ¹ýÀÔ´Ï´Ù.
¾î¶² ±â¼ú ¹ßÀüÀÌ Æ÷ȹ ¼ö¼Ò¸¦ ´ë±Ô¸ð·Î »ç¿ëÇÒ ¼ö ÀÖ°ÔÇÒ °ÍÀΰ¡?
¼ö¼Ò »ý»ê ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº ĸƼºê ¼ö¼Ò »ý»ê ½Ã½ºÅÛÀÇ °æÁ¦¼º°ú È¿À²¼ºÀ» Å©°Ô º¯È½Ã۰í ÀÖ½À´Ï´Ù. ¼öÁõ±â ¸Þź °³Áú(SMR)Àº ³ôÀº ¼ö¼Ò Ãâ·Â°ú ÅëÇÕ ¿¡³ÊÁö ½Ã½ºÅÛ°úÀÇ È£È¯¼ºÀ¸·Î ÀÎÇØ ƯÈ÷ ´ë±Ô¸ð ÈÇÐ Ç÷£Æ®¿¡¼ ¿©ÀüÈ÷ Áö¹èÀûÀÎ ¹æ¹ýÀÔ´Ï´Ù. ±×·¯³ª ±âÁ¸ÀÇ SMRÀº ¼öÀ²À» Çâ»ó½ÃŰ¸é¼ ¹èÃâ·®À» ÁÙÀÌ´Â ÀÚ°¡ ¿Âµµ °³Áú(ATR), ¸âºê·¹ÀÎ ±â¹Ý ºÐ¸® ÀåÄ¡, ÅëÇÕÇü ź¼Ò Æ÷Áý ¼Ö·ç¼Ç µîÀÇ ±â¼ú Çõ½ÅÀ» ÅëÇØ ¾÷±×·¹À̵åµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, Àü±âºÐÇØ´Â Àç»ý¿¡³ÊÁö °¡°Ý Ç϶ô°ú ¸ðµâ½Ä ¾ç¼ºÀÚ±³È¯¸·(PEM) ¹× ¾ËÄ®¸® ÀüÇØÁ¶ °³¹ß·Î ÀÎÇØ ĸƼºê ºÐ¾ß¿¡¼ °ßÀηÂÀ» ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº Áß¼Ò±Ô¸ðÀÇ ÈÇÐ ½Ã¼³¿¡ ÀÌ»óÀûÀ̸ç, ¼ö¼Ò Ãâ·ÂÀÇ À¯¿¬¼ºÀ» Á¦°øÇϰí, ž籤 ¹× dz·Â ¹ßÀü°ú ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. °íµµÀÇ ÀÚµ¿È, ½Ç½Ã°£ Áø´Ü, ÇÁ·Î¼¼½º ÃÖÀûÈ ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ ½Ã½ºÅÛ °¡µ¿ ½Ã°£À» Çâ»ó½ÃŰ¸é¼ ÀΰǺñ¿Í À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù. IoT Áö¿ø ¸ð´ÏÅ͸µ Ç÷§ÆûÀ» ÅëÇØ ¿©·¯ »ý»ê ¶óÀο¡ °ÉÄ£ ¿¹Áöº¸Àü, Áß¾ÓÁ¦¾î, ¿ø°Ý Áø´ÜÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ȯ°æ ±ÔÁ¦°¡ ¾ö°ÝÇÑ Áö¿ª¿¡¼´Â SMR°ú ź¼Ò Æ÷Áý ¹× ÀúÀå(CCS)À» °áÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© ±âÁ¸ ÀÎÇÁ¶ó¸¦ »õ·Ó°Ô ±¸ÃàÇÏÁö ¾Ê°íµµ Àúź¼Ò ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ½ºÅ°µå¿¡ ÀåÂøµÈ ÄÁÅ×À̳ÊÇü ¼ö¼Ò À¯´ÖÀÇ µµÀÔÀ¸·Î ÈÇÐ ±â¾÷µéÀº ´Ü°èÀû ±Ô¸ð È®´ë¿Í ºñÀü±âÈ Áö¿ª¿¡¼ÀÇ ½Ã½ºÅÛ µµÀÔÀ» ¿ëÀÌÇÏ°Ô ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¼ö¼Ò »ý»êÀÇ ºñ¿ë-ÆíÀÍ °è»êÀ» À籸¼ºÇϰí, ´ëÇü ¹ü¿ë ÈÇо÷üºÎÅÍ Æ¯¼ö ÈÇо÷ü±îÁö Æø³Ð°Ô äÅÃÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù.
ÈÇÐ »ê¾÷ Áß ¾î´À ºÎ¹®ÀÌ Ã¤¿ëÀ» ÃËÁøÇϰí Àִ°¡?
ĸƼºê ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ ¼ö¿ä´Â ºñ¿ë, È¿À²¼º, Áö¼Ó°¡´É¼º Ãø¸é¿¡¼ ´Ù¾çÇÑ ¾Ð·Â¿¡ Á÷¸éÇÑ ÀüÅëÀûÀÎ ´ëÇü ÈÇо÷ü¿Í ½ÅÈï Æ¯¼ö ÈÇо÷ü ¸ðµÎ¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¾Ï¸ð´Ï¾Æ ¹× ¸Þź¿Ã Á¦Á¶¾÷ü´Â ¼ö¼Ò ¿ä±¸·® Ãø¸é¿¡¼ ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, ÇöÀå SMR À¯´ÖÀ» ÇÙ½É °øÁ¤ ¿öÅ©Ç÷ο쿡 ±í¼÷ÀÌ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ºÐ¾ß´Â ÇöÀç °øÁ¤ÀÇ ½Å·Ú¼ºÀ» ÈѼÕÇÏÁö ¾Ê°í ¼¼°è Żź¼ÒÈ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ºí·ç¼ö¼Ò¿Í ±×¸°¼ö¼Ò¸¦ ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ³ó¾à, ÀǾàǰ, ÆäÀÎÆ®, ±â´É¼º ¼ÒÀç µî Æ¯¼ö ÈÇÐ Á¦Á¶¾÷üµéÀº °í¼øµµ ¿ä°ÇÀ» ÃæÁ·Çϰí ÀÚü °øÁ¤À» ¿ÜºÎ ¿À¿° À§ÇèÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇØ Ä¸Æ¼ºê ¼ö¼Ò ½Ã½ºÅÛÀ» Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. °ú»êȼö¼Ò ¹× ÇÕ¼º¿¬·á Á¦Á¶¾÷üµéµµ °øÁ¤ °È¸¦ Áö¿øÇϰí ÅõÀÔ·® º¯µ¿À» ÁÙÀ̱â À§ÇØ Ä¸Æ¼ºê ¿ë·®À» È®ÀåÇϰí ÀÖ½À´Ï´Ù. e-¸Þź¿ÃÀ̳ª e-¾Ï¸ð´Ï¾Æ¿Í °°Àº ±×¸° ¼ö¼Ò À¯µµÃ¼¿¡ ÁøÃâÇÏ´Â ½ºÅ¸Æ®¾÷°ú ½ºÄÉÀϾ÷ ±â¾÷µéÀº óÀ½ºÎÅÍ ÀüÇØÁú ±â¹Ý ¼ö¼Ò »ý»êÀ» ÅëÇÕÇÑ ¼öÁ÷ ÅëÇÕÇü »ý»ê ¸ðµ¨À» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÄɹÌÄà ÆÄÅ©³ª ¸ÖƼ Å×³ÍÆ® »ê¾÷´ÜÁö¿¡¼´Â ´Ù¾çÇÑ ¼ö¿ä ÇÁ·ÎÆÄÀÏÀ» °¡Áø º´¼³ ½Ã¼³¿¡ ´ëÀÀÇϱâ À§ÇØ °øÀ¯Çü ĸƼºê ¼ö¼Ò ½Ã½ºÅÛÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÃßÀû¼º, ÇöÁö »ý»ê, ¹èÃâ·® °ø°³¸¦ ÁöÁöÇÏ´Â ±ÔÁ¦ µ¿Çâµµ °ø±Þ¸Á ¹«°á¼º°ú ȯ°æ Áؼö¸¦ Áõ¸íÇÏ·Á´Â ±â¾÷ÀÇ ±¸¸Å °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¿³²¾Æ½Ã¾Æ, ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä« µî °¡½º ¹× ¼ö¼Ò ÀÎÇÁ¶ó°¡ ºÒ¾ÈÁ¤ÇÑ Áö¿ª¿¡¼´Â ÀÚ°¡¹ßÀüÀÌ Àü·«Àû ¼±ÅÃÀÌ ¾Æ´Ñ Çö½ÇÀûÀ¸·Î ÇÊ¿äÇÑ °ÍÀ¸·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù. Àüü ¹ë·ùüÀο¡¼ ÃÖÁ¾ »ç¿ëÀÚ´Â ¾ÈÀü°ú ºñ¿ë Àý°¨»Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀÎ ¿î¿µ ź·Â¼ºÀÇ ±âµÕÀ¸·Î¼ ĸƼºê ¼ö¼Ò¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù.
ÈÇÐ »ê¾÷¿¡¼ ĸƼºê ¼ö¼ÒÀÇ ±Þ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?
ĸƼºê ÈÇÐ ¼ö¼Ò »ý»ê ½ÃÀåÀÇ ¼ºÀåÀº ÁøÈÇÏ´Â ¿¡³ÊÁö Àü·«, Żź¼ÒÈ ¸ñÇ¥, ÈÇÐ ºÎ¹®ÀÇ ¼ö¼Ò ÀÀ¿ë ºÐ¾ß ´Ù¾çÈ¿Í °ü·ÃµÈ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °øÁ¤¿¡ Æ¯ÈµÈ °í¼øµµ ¼ö¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÈÇо÷üµéÀÌ »ý»ê ÁÖµµ±ÇÀ» Áã°í ºÒ¾ÈÁ¤ÇÑ ¿ÜºÎ °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙ¿©¾ß ÇÕ´Ï´Ù. ¸ðµâÇü SMR, ATR, ÀüÇØÁ¶ ½Ã½ºÅÛÀÇ ±â¼úÀû Áøº¸·Î ÀÎÇØ ÇöÀå ¹ßÀüÀÌ °æÁ¦ÀûÀ¸·Î ½ÇÇö °¡´ÉÇϰí, ¼³ºñ ±Ô¸ð¿¡ °ü°è¾øÀÌ È®ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ź¼Ò °¡°Ý ¸ÞÄ¿´ÏÁò°ú ¹èÃâ ±ÔÁ¦ÀÇ È®»êÀº ºí·ç ¼ö¼Ò¿Í ±×¸° ¼ö¼Ò¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈÇϰí, ź¼Ò Æ÷Áý ¹× Àç»ý¿¡³ÊÁö ÅõÀÔÀ» ÅëÇÕÇÑ ¿Â»çÀÌÆ® ½Ã½ºÅÛÀÇ Çʿ伺À» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù. Æó¿ ȸ¼ö, »ê¾÷ °ø»ý µî ¼øÈ¯Çü À¯Æ¿¸®Æ¼ ½Ã½ºÅÛ¿¡ ¼ö¼Ò »ý»êÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¾î °øÀå ÀüüÀÇ È¿À²¼º°ú Áö¼Ó°¡´É¼º ÁöÇ¥°¡ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ½ÅÈï ½ÃÀåÀÇ ºÐ»êÇü »ê¾÷´ÜÁö ¹× ±×¸°Çʵå ÈÇРŬ·¯½ºÅÍ´Â ÇÙ½É ÀÎÇÁ¶ó °èȹ¿¡ ĸƼºê ¼ö¼Ò¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ESG ÄÄÇöóÀ̾𽺿¡ ´ëÇÑ ÅõÀÚÀÚµéÀÇ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷µéÀº ȯ°æ°ú ÆòÆÇ Ãø¸é¿¡¼ °¡Ä¡ Àִ ûÁ¤ ¼ö¼Ò Àü·«À» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤ºÎÀÇ Àμ¾Æ¼ºê, º¸Á¶±Ý, ³ì»ö±ÝÀ¶ÀÇ ÀÌ¿ëÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ÀÚº» Áý¾àÀûÀΠĸƼºê ¼ö¼Ò ÇÁ·ÎÁ§Æ®°¡ º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®À©, ½Ç½Ã°£ ºÐ¼®, Áß¾Ó ÁýÁᫎ ¸ð´ÏÅ͸µÀÌ µµÀÔµÇ¸é¼ O&&M ¼º´ÉÀÌ Çâ»óµÇ°í, ĸƼºê ÀÚ»êÀÇ ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò°¡ »õ·Î¿î ÈÇÐ °æ·Î¿Í ÆÄ»ý Á¦Ç°À¸·Î °è¼Ó È®ÀåµÇ°í ÀÖ´Â °¡¿îµ¥, ĸƼºê »ý»êÀº ¼¼°è ÈÇÐ »ê¾÷¿¡¼ °æÀïÀû Çʿ伺°ú Àü·«Àû ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
ÇÁ·Î¼¼½º(¼öÁõ±â °³Áú ÇÁ·Î¼¼½º, ÀüÇØ ÇÁ·Î¼¼½º, ±âŸ ÇÁ·Î¼¼½º)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â °ÍÀÌ ¾Æ´Ï¶ó, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Captive Chemical Hydrogen Generation Market to Reach US$119.1 Billion by 2030
The global market for Captive Chemical Hydrogen Generation estimated at US$85.1 Billion in the year 2024, is expected to reach US$119.1 Billion by 2030, growing at a CAGR of 5.8% over the analysis period 2024-2030. Steam Reformer Process, one of the segments analyzed in the report, is expected to record a 6.4% CAGR and reach US$73.8 Billion by the end of the analysis period. Growth in the Electrolysis Process segment is estimated at 5.2% CAGR over the analysis period.
The U.S. Market is Estimated at US$22.4 Billion While China is Forecast to Grow at 5.6% CAGR
The Captive Chemical Hydrogen Generation market in the U.S. is estimated at US$22.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$19.2 Billion by the year 2030 trailing a CAGR of 5.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.5% and 4.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.6% CAGR.
Global Captive Chemical Hydrogen Generation Market - Key Trends & Drivers Summarized
Why Are Chemical Manufacturers Investing In Their Own Hydrogen Production?
The dynamics of hydrogen supply within the chemical sector are rapidly shifting, with more companies moving away from dependence on third-party vendors and toward captive, on-site hydrogen generation. This strategic shift is largely driven by the need for reliability, cost optimization, and greater operational control. Hydrogen is an essential feedstock in a wide array of chemical processes, including the production of ammonia, methanol, hydrogen peroxide, and various specialty chemicals. Any disruption in hydrogen supply can halt production lines and lead to significant losses. Captive hydrogen generation offers a solution by enabling chemical manufacturers to produce a consistent supply tailored to their purity and flow requirements. On-site systems minimize transportation costs, avoid the risks of supply chain disruption, and eliminate the need for bulk storage and high-pressure transport. In high-consumption facilities, long-term operational savings from captive hydrogen are substantial, especially in regions with access to low-cost natural gas or renewable electricity. Moreover, as the global chemical industry faces increasing pressure to decarbonize, on-site generation presents a pathway to transition toward cleaner hydrogen via electrolysis or blue hydrogen methods integrated with carbon capture. Captive systems also improve energy integration across production facilities, utilizing waste heat and optimizing utility consumption. For chemical plants operating in remote or emerging industrial zones, where pipeline infrastructure is limited, captive generation is the only viable way to meet process requirements without compromising scalability or reliability.
What Technological Advancements Are Making Captive Hydrogen Viable At Scale?
Rapid progress in hydrogen production technologies is transforming the economics and efficiency of captive generation systems. Steam methane reforming (SMR) remains the dominant method, particularly for large-scale chemical plants, thanks to its high hydrogen output and compatibility with integrated energy systems. However, traditional SMR is being upgraded through innovations such as autothermal reforming (ATR), membrane-based separation units, and integrated carbon capture solutions, which reduce emissions while improving yield. Meanwhile, electrolysis is gaining traction in the captive space, driven by falling renewable energy prices and the development of modular proton exchange membrane (PEM) and alkaline electrolyzers. These systems are ideal for small- and medium-sized chemical facilities, offering flexibility in hydrogen output and enabling integration with solar or wind power sources. Advanced automation, real-time diagnostics, and process optimization software are reducing labor and maintenance costs while enhancing system uptime. IoT-enabled monitoring platforms now allow for predictive maintenance, centralized control, and remote diagnostics across multiple production lines. In regions with stringent environmental regulations, hybrid systems combining SMR with carbon capture and storage (CCS) are being deployed to produce low-carbon hydrogen without overhauling legacy infrastructure. Additionally, the introduction of skid-mounted, containerized hydrogen units is making it easier for chemical companies to scale up gradually or deploy systems in off-grid locations. These innovations are reshaping the cost-benefit calculus of captive hydrogen generation, enabling wider adoption across both large commodity producers and specialty chemical manufacturers.
Which Sectors Within Chemicals Are Driving Adoption-And Why Now?
The demand for captive hydrogen generation is being driven by both traditional chemical giants and emerging specialty producers who face varying pressures around cost, efficiency, and sustainability. Ammonia and methanol manufacturers continue to lead in terms of hydrogen volume requirements, with on-site SMR units deeply integrated into their core process workflows. These sectors are now exploring blue and green hydrogen to meet global decarbonization targets without compromising process reliability. Specialty chemical producers-including those in agrochemicals, pharmaceuticals, coatings, and performance materials-are increasingly adopting captive hydrogen systems to meet high-purity requirements and to protect proprietary processes from external contamination risks. Hydrogen peroxide and synthetic fuel manufacturers are also scaling up captive capabilities to support process intensification and reduce input volatility. Startups and scale-ups entering green hydrogen derivatives, such as e-methanol or e-ammonia, are structuring vertically integrated production models with electrolysis-based hydrogen generation built in from the outset. Additionally, chemical parks and multi-tenant industrial zones are adopting shared captive hydrogen systems to serve co-located facilities with varying demand profiles. Regulatory trends favoring traceability, localized production, and emissions disclosure are also influencing purchasing decisions, as companies seek to prove supply chain integrity and environmental compliance. Moreover, regions with unreliable gas or hydrogen infrastructure-such as parts of Southeast Asia, Africa, and Latin America-are seeing captive generation as a practical necessity rather than a strategic option. Across the value chain, end users are turning to captive hydrogen not just for security and savings, but also as a pillar of long-term operational resilience.
What’s Propelling The Rapid Growth Of Captive Hydrogen In The Chemical Industry?
The growth in the captive chemical hydrogen generation market is driven by several factors related to evolving energy strategies, decarbonization goals, and the diversification of hydrogen applications in the chemical sector. Rising demand for process-specific, high-purity hydrogen is compelling chemical manufacturers to take control of production and reduce dependency on volatile external supply chains. Technological advancements in modular SMR, ATR, and electrolyzer systems are making on-site generation economically viable and scalable across facility sizes. The proliferation of carbon pricing mechanisms and emissions regulations is accelerating investment in blue and green hydrogen pathways, further reinforcing the need for on-site systems with integrated carbon capture or renewable energy inputs. Increasing integration of hydrogen production into circular utility systems-such as waste heat recovery and industrial symbiosis-is improving overall plant efficiency and sustainability metrics. Decentralized industrial zones and greenfield chemical clusters in emerging markets are incorporating captive hydrogen into their core infrastructure plans. Meanwhile, heightened investor focus on ESG compliance is pushing companies to adopt clean hydrogen strategies that offer both environmental and reputational value. The availability of government incentives, grants, and green finance instruments is also making capital-intensive captive hydrogen projects more accessible. Additionally, rising adoption of digital twins, real-time analytics, and centralized monitoring is improving O&M performance and lowering lifecycle costs of captive assets. As hydrogen continues to expand into new chemical pathways and derivative products, captive production is emerging as both a competitive necessity and a strategic advantage across the global chemical landscape.
SCOPE OF STUDY:
The report analyzes the Captive Chemical Hydrogen Generation market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Process (Steam Reformer Process, Electrolysis Process, Other Processes)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 42 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.