![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791629
¼¼°èÀÇ Á÷Á¢°ø±âÆ÷Áý(DAC) ½ÃÀåDirect Air Capture |
¼¼°èÀÇ Á÷Á¢°ø±âÆ÷Áý(DAC) ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 1¾ï 770¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Á÷Á¢°ø±âÆ÷Áý(DAC) ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â 55.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Solid-DAC ±â¼úÀº CAGR 52.3%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 8¾ï 6,640¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù. Liquid-DAC ±â¼ú ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 58.8%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 2,830¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 52.7%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ Á÷Á¢°ø±âÆ÷Áý(DAC) ½ÃÀåÀº 2024³â¿¡ 2,830¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 52.7%·Î 2030³â±îÁö 2¾ï 2,100¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 49.9%¿Í 48.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 38.4%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°è°¡ ź¼Ò ¹èÃâ·® Áõ°¡¿Í ±âÈÄ º¯È¿¡ ´ëÀÀÇÏ´Â °¡¿îµ¥, Á÷Á¢°ø±âÆ÷Áý(DAC)(DAC) ±â¼úÀÌ Åº¼Ò Á¦°ÅÀÇ Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ¹èÃâ¹°À» ¹ß»ý¿ø¿¡¼ Æ÷ÁýÇÏ´Â ±âÁ¸ÀÇ Åº¼Ò Æ÷Áý ¹æ½Ä°ú ´Þ¸® DAC´Â ÁÖº¯ °ø±â¿¡¼ Á÷Á¢ CO2¸¦ ÃßÃâÇϱ⠶§¹®¿¡ ¸¶À̳ʽº ¹èÃâ°ú ´ë±â Áß Åº¼Ò Àú°¨ÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ÈÇÐÈíÂøÁ¦, ÇÊÅÍ ¶Ç´Â °íü ÈíÂø ±â¼úÀ» ÀÌ¿ëÇÏ¿© CO2¸¦ ºÐ¸®ÇÏ¿© ÁöÇÏ¿¡ ÀúÀåÇϰųª ÇÕ¼º¿¬·á, ź¼Ò°è Á¦Ç°, ¼®À¯ÁõÁøÈ¸¼ö¹ý(EOR)¿¡ Àç»ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£±â¾÷Àº ¼ø¹èÃâ·® Á¦·Î ¸ñÇ¥¸¦ ´Þ¼ºÇÒ ¼ö ÀÖ´Ù°í º¸°í DAC¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÇÏÁö¸¸ ³ôÀº ¿¡³ÊÁö ¼Òºñ·®, ÀÎÇÁ¶ó ºñ¿ë, È®À强 µîÀÇ ¹®Á¦°¡ º¸±ÞÀÇ ÁÖ¿ä °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°¿¡µµ ºÒ±¸Çϰí Àç·á °úÇÐ, Àç»ý ¿¡³ÊÁö ÅëÇÕ, ź¼Ò Ȱ¿ë ½ÃÀåÀÇ ¹ßÀüÀ¸·Î DACÀÇ µµÀÔÀÌ °¡¼Óȵǰí ÀÖÀ¸¸ç, ±âÈÄ ¿Ïȸ¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
Á÷Á¢°ø±âÆ÷Áý(DAC) ±â¼úÀÇ ³ôÀº ¿î¿µ ºñ¿ë°ú ¿¡³ÊÁö Áý¾àÀûÀΠƯ¼ºÀº »ó¾÷Àû È®À强À» °¡·Î¸·´Â Å« À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. DAC´Â ÁÖ·Î ´ë±â Áß ÀÌ»êÈź¼Ò ³óµµ°¡ ³·±â ¶§¹®¿¡(¾à 0.04%) ´ë±â¿¡¼ ÀÌ»êÈź¼Ò¸¦ ºÐ¸®Çϱâ À§ÇØ ¸·´ëÇÑ ¿¡³ÊÁö ÅõÀÔÀÌ ÇÊ¿äÇÕ´Ï´Ù. DAC ½Ã¼³ÀÇ Àü·ÂÀ» ž籤, dz·Â, Áö¿ µî Àç»ý¿¡³ÊÁö¿¡ ÀÇÁ¸ÇÏ´Â °ÍÀº ¼ø¹èÃâ·® ¸¶À̳ʽº¸¦ À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÌÁö¸¸, Áö¼Ó °¡´ÉÇÑ Àü·Â °ø±ÞÀ» È®º¸ÇÏ´Â °ÍÀº ¿©ÀüÈ÷ °úÁ¦ÀÔ´Ï´Ù. ¶ÇÇÑ, CO2 Á¦°ÅÀÇ Åæ´ç ºñ¿ëÀº ¿©ÀüÈ÷ ³ôÀ¸¸ç, Åæ´ç 100-600´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ±×·¯³ª ÷´Ü ÈíÂøÁ¦, ¸ðµâ½Ä ¹ÝÀÀ±â ¼³°è, ¿ ÅëÇÕ ±â¼ú¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°¡ ºñ¿ë Àý°¨¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ º¸Á¶±Ý, ź¼Ò °¡°Ý ¸ÞÄ¿´ÏÁò, ¹Î°£ ÅõÀÚµµ DACÀÇ ÀçÁ¤Àû ½ÇÇö °¡´É¼ºÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±â¼úÀÇ ºñ¾àÀûÀÎ ¹ßÀüÀ¸·Î ¿¡³ÊÁö È¿À²ÀÌ °³¼±µÇ°í ºñ¿ëÀÌ ³·¾ÆÁü¿¡ µû¶ó DAC´Â Æ´»õ ±â¼ú Çõ½Å¿¡¼ ÁÖ·ù ±âÈÄ º¯È ´ëÀÀÀ¸·Î ÀüȯµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
DACÀÇ µµÀÔÀ» °¡¼ÓÈÇÏ´Â µ¥ ÀÖ¾î Á¤Ã¥Àû ÇÁ·¹ÀÓ¿öÅ©¿Í ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼ÓÀÇ ¿ªÇÒÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â DAC °³¹ßÀ» Áö¿øÇϱâ À§ÇØ Åº¼Ò¹èÃâ±Ç Á¦µµ, ¼¼Á¦ ÇýÅÃ, ¹èÃâ·® °¨Ãà Àǹ« µîÀ» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ÀÇ ÀÎÇ÷¹ÀÌ¼Ç °¨¼Ò¹ýÀº ź¼Ò Á¦°Å ÇÁ·ÎÁ§Æ®¿¡ ÀçÁ¤Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇϰí DAC ½Ã¼³¿¡ ´ëÇÑ ¹Î°£ ÅõÀÚ¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÏÀÌÅ×Å© ´ë±â¾÷°ú ¼®À¯È¸»ç µî ´ë±â¾÷µéµµ DAC¿¡ ±â¹ÝÇÑ Åº¼Ò Á¦°Å ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ÀÌ»êÈź¼Ò ¹èÃâ·®À» »ó¼âÇÒ °ÍÀ» ¾à¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ¼¼°è ³ÝÁ¦·Î(Net Zero) ¾à¼Ó°ú Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇϸç, È®Àå °¡´ÉÇÑ DAC ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ±×·¯³ª ±ÔÁ¦ÀÇ ºÒÈ®½Ç¼º, Àå±âÀûÀÎ ÀÎÇÁ¶ó ÅõÀÚ, Ç¥ÁØÈµÈ ź¼Ò »êÁ¤ ÇÁ·¹ÀÓ¿öÅ©ÀÇ Çʿ伺 µî º¸±ÞÀ» À§ÇÑ °úÁ¦´Â ¿©ÀüÈ÷ ³²¾ÆÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺¿¡µµ ºÒ±¸Çϰí, ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ¼¾à°ú Á¤ºÎÀÇ Áö¿øÀ» ¹Þ´Â ź¼Ò ½ÃÀåÀº Àü ¼¼°èÀûÀ¸·Î DAC ¼³Ä¡ÀÇ Å« ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Á÷Á¢°ø±âÆ÷Áý(DAC) ½ÃÀåÀÇ ¼ºÀåÀº ±âÈÄ º¯È ¿ÏÈÀÇ ½Ã±Þ¼º Áõ°¡, CO2 Æ÷Áý È¿À² Çâ»ó, ź¼Ò Á¦°Å ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÚ¹ßÀû ¹× ±ÔÁ¤ Áؼö¿¡ ±â¹ÝÇÑ Åº¼Ò ½ÃÀåÀÇ È®´ë´Â DAC °³¹ßÀÚ¿¡°Ô »õ·Î¿î ¼öÀÍ¿øÀ» âÃâÇÏ°í »ó¾÷Àû ±Ô¸ðÀÇ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ź¼Ò °¡°Ý ¸ÞÄ¿´ÏÁò°ú ¼¼¾×°øÁ¦¸¦ Æ÷ÇÔÇÑ Á¤ºÎ Á¤Ã¥Àº ´ë±Ô¸ð µµÀÔÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÕ¼º ¿¬·á »ý»ê ¹× Áö¼Ó °¡´ÉÇÑ °ÇÃàÀÚÀç¿Í °°Àº »õ·Î¿î ź¼Ò ÀÌ¿ë ½ÃÀå°ú DACÀÇ ÅëÇÕÀº °æÁ¦Àû Ÿ´ç¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ±â¾÷, ÅõÀÚÀÚ, ȯ°æ´ÜüÀÇ ¼ø¹èÃâ·® ¸¶À̳ʽº ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ³ôÀº ¿¡³ÊÁö ¿ä±¸ »çÇ×°ú ÀÎÇÁ¶ó ºñ¿ë°ú °°Àº °úÁ¦¿¡µµ ºÒ±¸Çϰí, Áö¼ÓÀûÀÎ ¿¬±¸, Á¤Ã¥ Áö¿ø ¹× ±â¼ú Çõ½ÅÀ¸·Î DAC´Â ¼¼°è Żź¼ÒÈ Àü·«ÀÇ ÁÖ¿ä ±â¾÷ÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ºÎ¹®
±â¼ú(°íü-DAC ±â¼ú, ¾×ü-DAC ±â¼ú, Àü±âÈÇÐ-DAC ±â¼ú)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Direct Air Capture Market to Reach US$1.5 Billion by 2030
The global market for Direct Air Capture estimated at US$107.7 Million in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 55.5% over the analysis period 2024-2030. Solid-DAC Technology, one of the segments analyzed in the report, is expected to record a 52.3% CAGR and reach US$866.4 Million by the end of the analysis period. Growth in the Liquid-DAC Technology segment is estimated at 58.8% CAGR over the analysis period.
The U.S. Market is Estimated at US$28.3 Million While China is Forecast to Grow at 52.7% CAGR
The Direct Air Capture market in the U.S. is estimated at US$28.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$221.0 Million by the year 2030 trailing a CAGR of 52.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 49.9% and 48.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 38.4% CAGR.
As the world grapples with rising carbon emissions and climate change, Direct Air Capture (DAC) technology is emerging as a critical solution for carbon removal. Unlike conventional carbon capture methods that target industrial emissions at the source, DAC directly extracts CO2 from ambient air, allowing for negative emissions and atmospheric carbon reduction. The technology uses chemical sorbents, filters, or solid adsorption techniques to separate CO2, which can then be stored underground or repurposed for synthetic fuels, carbon-based products, and enhanced oil recovery (EOR). Governments and private entities are increasingly investing in DAC due to its potential to meet net-zero emission goals. However, challenges such as high energy consumption, infrastructure costs, and scalability remain key hurdles to widespread adoption. Despite these obstacles, advancements in materials science, renewable energy integration, and carbon utilization markets are accelerating DAC deployment, positioning it as a viable tool for climate mitigation.
The high operational costs and energy-intensive nature of Direct Air Capture technology have been major barriers to its commercial scalability. DAC requires significant energy input to separate CO2 from the air, primarily due to the low atmospheric concentration of carbon dioxide (around 0.04%). The reliance on renewable energy sources such as solar, wind, or geothermal to power DAC facilities is essential to maintaining net-negative emissions, but securing sustainable power supply remains a challenge. Additionally, the cost per ton of CO2 removal remains high, with estimates ranging between $100 and $600 per ton. However, continuous research into advanced sorbents, modular reactor designs, and heat integration techniques is driving cost reductions. Government subsidies, carbon pricing mechanisms, and private investments are also playing a crucial role in making DAC more financially feasible. As technological breakthroughs improve energy efficiency and lower costs, DAC is expected to transition from a niche innovation to a mainstream climate solution.
The role of policy frameworks and corporate sustainability commitments is becoming increasingly important in accelerating DAC adoption. Governments worldwide are implementing carbon credit programs, tax incentives, and emissions reduction mandates that support DAC development. The U.S. Inflation Reduction Act, for example, offers financial incentives for carbon removal projects, encouraging private sector investments in DAC facilities. Large corporations, including tech giants and oil companies, are also pledging to offset their carbon footprints through DAC-based carbon removal initiatives. These efforts align with global net-zero commitments and sustainability goals, increasing demand for scalable DAC solutions. However, regulatory uncertainties, long-term infrastructure investments, and the need for standardized carbon accounting frameworks remain challenges for widespread deployment. Despite these complexities, corporate sustainability pledges and government-backed carbon markets are expected to drive significant growth in DAC installations worldwide.
The growth in the Direct Air Capture market is driven by several factors, including the increasing urgency of climate change mitigation, advancements in CO2 capture efficiency, and rising investments in carbon removal technologies. The expansion of voluntary and compliance-based carbon markets is creating new revenue streams for DAC developers, encouraging commercial-scale deployment. Government policies, including carbon pricing mechanisms and tax credits, are further incentivizing large-scale adoption. Additionally, the integration of DAC with emerging carbon utilization markets, such as synthetic fuel production and sustainable building materials, is enhancing economic viability. The growing demand for net-negative emission solutions from corporations, investors, and environmental organizations is fueling market expansion. Despite challenges such as high energy requirements and infrastructure costs, continuous research, policy support, and innovation are expected to make DAC a key player in global decarbonization strategies.
SCOPE OF STUDY:
The report analyzes the Direct Air Capture market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Technology (Solid-DAC Technology, Liquid-DAC Technology, Electrochemical-DAC Technology)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 48 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.