![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791632
¼¼°èÀÇ DNA µ¥ÀÌÅÍ º¸°ü ½ÃÀåDNA Data Storage |
¼¼°èÀÇ DNA µ¥ÀÌÅÍ º¸°ü ½ÃÀåÀº 2030³â±îÁö 31¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 8,200¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â DNA µ¥ÀÌÅÍ º¸°ü ¼¼°è ½ÃÀåÀº 2024-2030³â°£ 83.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 31¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀΠŬ¶ó¿ìµå DNA µ¥ÀÌÅÍ º¸°üÀº CAGR 75.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 16¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. On-Premise Çü DNA µ¥ÀÌÅÍ º¸°ü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 96.5%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 2,160¸¸ ´Þ·¯, Áß±¹Àº CAGR 79.5%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ DNA µ¥ÀÌÅÍ º¸°ü ½ÃÀåÀº 2024³â¿¡ 2,160¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 4¾ï 4,410¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 79.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 74.8%¿Í 72.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 58.7%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ DNA µ¥ÀÌÅÍ º¸°ü ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
DNA°¡ ¼¼°è µ¥ÀÌÅÍ °úºÎÇÏ À§±â¿¡ ´ëÇÑ ±Ã±ØÀûÀÎ ÇØ°áÃ¥ÀÌ µÉ ¼ö ÀÖÀ»±î?
¼¼°è µ¥ÀÌÅÍ »ý¼º·®ÀÌ Àü·Ê ¾ø´Â ±Ô¸ð¿¡ µµ´ÞÇÔ¿¡ µû¶ó ±âÁ¸ ½ºÅ丮Áö ½Ã½ºÅÛÀº µðÁöÅÐ Á¤º¸ÀÇ ±Þ°ÝÇÑ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ °í±ººÐÅõÇϰí ÀÖ½À´Ï´Ù. °³ÀÎ¿ë ±â±â ¹× Ŭ¶ó¿ìµå Ç÷§Æû¿¡¼ ´ë±Ô¸ð °úÇÐ µ¥ÀÌÅͺ£À̽º¿¡ À̸£±â±îÁö, »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀº À̸¦ ÀúÀåÇÏ´Â µ¥ ÇÊ¿äÇÑ ¹°¸®Àû ÀÎÇÁ¶ó¸¦ ´É°¡Çϰí ÀÖ½À´Ï´Ù. DNA µ¥ÀÌÅÍ ÀúÀåÀº ÇÕ¼º DNA »ç½½¿¡ µðÁöÅÐ Á¤º¸¸¦ ÀÎÄÚµùÇϴ ȹ±âÀûÀÎ Á¢±Ù ¹æ½ÄÀ¸·Î, ¹æ´ëÇÑ ÀúÀå ¹Ðµµ, Àå±â ¾ÈÁ¤¼º, Áö¼Ó°¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. »ý¸íÀÇ ±âº» ºÐÀÚÀÎ DNA´Â ÀÌ·ÐÀûÀ¸·Î ±×·¥´ç 215ÆäŸ¹ÙÀÌÆ® ÀÌ»óÀ» ÀúÀåÇÒ ¼ö ÀÖ¾î Àڱ⠶Ǵ ±¤ÇÐ ÀúÀåÀåÄ¡º¸´Ù ¸î ¹è³ª ´õ ¸¹Àº ¿ë·®À» ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ Á¢±Ù ºóµµ´Â ³·Áö¸¸ Àå±âÀûÀÎ µ¥ÀÌÅÍ º¸°üÀÌ Áß¿äÇÑ ÄÝµå ½ºÅ丮Áö ¿ëµµÀÇ °æ¿ì ´õ¿í ±×·¸´Ù. À¯Àüü º¸Á¸ ½Ã¼³, õ¹® °üÃø¼Ò, Çʸ§ ¾ÆÄ«À̺ê¿Í °°ÀÌ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ´Ù·ç´Â ±â°üµéÀº ¼öõ³âµ¿¾È µ¥ÀÌÅ͸¦ ¿È ¾øÀÌ º¸Á¸ÇÒ ¼ö ÀÖ´Â DNA ±â¹Ý ½Ã½ºÅÛ¿¡ Å« °ü½ÉÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, DNA´Â ÁøºÎÈµÇ±â ¾î·Æ°í ±âÁ¸ »ý¹°ÇÐÀû ½Ã½ºÅÛ°úÀÇ È£È¯¼ºÀÌ ³ô´Ù´Â Á¡µµ DNAÀÇ ¸Å·Â¿¡ ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù. Ç×»ó ¿¡³ÊÁö¿Í ³Ã°¢ÀÌ ÇÊ¿äÇÑ ½Ç¸®ÄÜ ±â¹Ý ¸Åü¿Í ´Þ¸®, DNA´Â °ÇÁ¶ÇÑ È¯°æ¿¡¼µµ ¼ö¼¼±â µ¿¾È ¾ÈÁ¤µÈ »óŸ¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒÇüÈ °¡´É¼ºÀº ¶Ç ´Ù¸¥ ȹ±âÀûÀÎ Á¡ÀÔ´Ï´Ù. ÀÌ·ÐÀûÀ¸·Î µ¥ÀÌÅͼ¾ÅÍ Àüü¸¦ ¼³ÅÁ ÇÑ ¾Ëº¸´Ù ÀÛÀº ºÎÇÇ·Î Ãà¼ÒÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º»ý¹°Çаú ³ª³ë±â¼úÀÇ ¹ßÀü°ú ÇÔ²² DNA µ¥ÀÌÅÍ ÀúÀåÀº »çº¯ÀûÀÎ °³³ä¿¡¼ ±¸Ã¼ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÀüȯµÇ¾î µ¥ÀÌÅÍ ¾ÆÄ«À̺êÀÇ ¹Ì·¡¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.
±â¼úÀû Çõ½ÅÀÌ DNA ±â¹Ý ½ºÅ丮ÁöÀÇ °¡´É¼ºÀ» ¾î¶»°Ô °¡¼ÓÈÇϰí Àִ°¡?
DNA µ¥ÀÌÅÍ ÀúÀåÀÇ °¡´É¼ºÀº DNA ÇÕ¼º, ¿°±â¼¿ °áÁ¤, ºÎÈ£È ¾Ë°í¸®Áò µî ¸î °¡Áö ½ÇÇö ±â¼úÀÇ ´«ºÎ½Å ¹ßÀüÀ¸·Î ÀÎÇØ ½ÇÇöµÇ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù±îÁö DNA ¾²±â¿Í ÀбâÀÇ ³ôÀº ºñ¿ë°ú ´À¸° ¼Óµµ·Î ÀÎÇØ ÀÌ °³³äÀº »ó¾÷ÀûÀ¸·Î ½ÇÇö ºÒ°¡´ÉÇß½À´Ï´Ù. ±×·¯³ª È¿¼Ò ÇÕ¼º, ¸¶ÀÌÅ©·Î¾î·¹ÀÌ ±â¹Ý ¹æ¹ý µî °í󸮷®, Àúºñ¿ëÀÇ DNA ÇÕ¼º ±â¼úÀÇ µîÀåÀ¸·Î ºñ¿ëÀÌ È¹±âÀûÀ¸·Î Àý°¨µÇ°í µ¥ÀÌÅÍ ¾²±â ¼Óµµ°¡ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. µðÄÚµù Ãø¸é¿¡¼´Â Â÷¼¼´ë ½ÃÄö½Ì(NGS) ±â¼úÀÌ ´õ ºü¸£°í, ´õ Àú·ÅÇϰí, ´õ Á¤È®ÇÏ°Ô ÁøÈÇϰí ÀÖÀ¸¸ç, µ¥ÀÌÅÍ °Ë»öÀÇ È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇãÇÁ¸¸ ºÎÈ£È, ¿À·ù Á¤Á¤ ¾Ë°í¸®Áò, °¡´Ú Áߺ¹¼º ¸ðµ¨°ú °°Àº »õ·Î¿î ºÎÈ£È Ã¼°èÀÇ °³¹ß·Î µðÁöÅп¡¼ »ý¹°Ã¼·ÎÀÇ º¯È¯¿¡ ´ëÇÑ ½Å·Ú¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÇÕ¼º ¹× ¿°±â¼¿ ºÐ¼® Áß »ç½½ ¼Õ½Ç, µ¹¿¬º¯ÀÌ, ¿Àµ¶°ú °°Àº ¿À·ù¸¦ ÁÙÀ̰í ÀúÀåµÈ µ¥ÀÌÅÍÀÇ Ãæ½Çµµ¸¦ º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¹ßÀüÀº ÀÚµ¿ÈµÈ ¸¶ÀÌÅ©·ÎÀ¯Ã¼ÇÐ ¹× ·¦¿ÂĨ Ç÷§ÆûÀÇ »ç¿ëÀÔ´Ï´Ù. ¸î¸î ÇÏÀÌÅ×Å© ±â¾÷ ¹× ¿¬±¸±â°üÀº ÇÕ¼º DNA¿¡¼ À̹ÌÁö, ºñµð¿À, ÅØ½ºÆ® ÆÄÀÏÀ» ÀúÀåÇÏ°í °Ë»öÇÒ ¼ö ÀÖ´Â °³³äÁõ¸í ½Ã½ºÅÛÀ» ½Ã¿¬Çϱ⠽ÃÀÛÇß½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ±â¾÷µéÀº ¹Ðµµ³ª ³»±¸¼ºº¸´Ù ´ë±â ½Ã°£ÀÌ Áß¿äÇÏÁö ¾ÊÀº Àå±â ÀúÀå µ¥ÀÌÅ͸¦ À§ÇÑ DNA ½ºÅ丮Áö¿¡ ƯÈ÷ °ü½ÉÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ AI¿Í ¸Ó½Å·¯´×Àº ¹è¿ ¼³°è¸¦ ÃÖÀûÈÇϰí Áߺ¹¼ºÀ» ÁÙ¿© Àüü ½Ã½ºÅÛÀ» º¸´Ù È¿À²ÀûÀ¸·Î ¸¸µå´Â µ¥ Ȱ¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ È¹±âÀûÀÎ ¹ßÀüÀ» Á¾ÇÕÇϸé, ½ÇÇèÀûÀÎ DNA ½ºÅ丮Áö ¸ðµ¨°ú »ó¾÷ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ½Ã½ºÅÛ °£ÀÇ °ÝÂ÷°¡ Á¼ÇôÁö°í ÀÖÀ¸¸ç, °¡±î¿î ¹Ì·¡¿¡ È®Àå °¡´ÉÇÑ ¹èÆ÷¸¦ À§ÇÑ ±â¹ÝÀÌ ¸¶·ÃµÇ°í ÀÖ½À´Ï´Ù.
»ê¾÷°èÀÇ Çù·ÂÀ¸·Î DNA ½ºÅ丮ÁöÀÇ »ó¿ëÈ¿Í Ç¥ÁØÈ¸¦ ÃËÁøÇÒ ¼ö ÀÖÀ»±î?
»ê¾÷°è, ¿¬±¸±â°ü, ±×¸®°í »ó¿ëÈ ¹× ¼¼°è Ç¥ÁØÈ¸¦ À§ÇÑ ÄÁ¼Ò½Ã¾ö °£ÀÇ Çù·Â °È¿¡ ÈûÀÔ¾î, DNA ½ºÅ丮Áö ½ÃÀåÀº Çмú¿¬±¸ÀÇ Æ²À» ³Ñ¾î¼°í ÀÖ½À´Ï´Ù. ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®, IBM, ±¸±Û°ú °°Àº ÇÏÀÌÅ×Å© ´ë±â¾÷µéÀº ÁÖ¿ä ¿¬±¸ ´ëÇаú ÇÔ²² µðÁöÅÐ ¶óÀ̺귯¸®¸¦ ÇÕ¼º DNA ¾ÆÄ«À̺ê·Î ÀüȯÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ÇÕ¼º »ý¹°ÇÐ ¹× µ¥ÀÌÅÍ »çÀ̾ð½ºÀ» Àü¹®À¸·Î ÇÏ´Â ½ºÅ¸Æ®¾÷µéÀº DNA ½ºÅ丮Áö¸¦ »ó¿ë °í°´ÀÌ º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä Ç÷§Æû°ú ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·ÂÀû ±âÁ¶¸¦ µÞ¹ÞħÇÏ´Â Å« ¿øµ¿·ÂÀº DNA µ¥ÀÌÅÍ Æ÷¸Ë, ½ºÅ丮Áö ÇÁ·ÎÅäÄÝ, »óÈ£¿î¿ë ÇÁ·¹ÀÓ¿öÅ©ÀÇ º¸ÆíÀû Ç¥ÁØÀ» ¼ö¸³Çϱâ À§ÇÑ DNA µ¥ÀÌÅÍ ½ºÅ丮Áö ¾ó¶óÀÌ¾ð½º¿Í °°Àº ¾ó¶óÀ̾ð½ºÀÇ Çü¼ºÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº DNA°¡ ÀúÀåµÈ µ¥ÀÌÅͰ¡ º¥´õ³ª Ç÷§Æû¿¡ °ü°è¾øÀÌ ¼ö½Ê, ¼ö¹é³âÈÄ¿¡µµ »ç¿ë °¡´ÉÇϰí ÀÐÀ» ¼ö ÀÖµµ·Ï º¸ÀåÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Á¤ºÎµµ Àå±âÀûÀÎ µðÁöÅÐ º¸Á¸ ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» Áö¿øÇÏ°í ±¹°¡ ±â·Ï¹°À» º¸È£Çϱâ À§ÇÑ Àü·«Àû ¸Åü·Î DNA¸¦ °í·ÁÇÔÀ¸·Î½á ±× ¿ªÇÒÀ» ¼öÇàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöÀûÀç»ê±Ç »óȲÀº ºü¸£°Ô ÁøÈÇϰí ÀÖÀ¸¸ç, ÀÎÄÚµù ±â¼ú¿¡¼ DNA ÄÁÅ×ÀÌ³Ê µðÀÚÀÎ ¹× ¾×¼¼½º ½Ã½ºÅÛ¿¡ À̸£±â±îÁö ¸ðµç ƯÇã°¡ Ãâ¿øµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ãʳ»±¸¼º ¹é¾÷ ½ºÅ丮Áö¸¦ ¿øÇÏ´Â °í°´À» À§ÇØ 'DNA¸¦ ¼ºñ½º·Î Á¦°øÇÏ´Â' ±â¾÷µµ µîÀåÇÏ´Â µî ¼ºñ½º ¸ðµ¨µµ ±¸Ã¼ÈµÇ±â ½ÃÀÛÇß½À´Ï´Ù. ÇöÀç ÀÎÄÚµù ¹× µðÄÚµù ºñ¿ëÀº ¿©ÀüÈ÷ ³ôÁö¸¸, ±Ô¸ðÀÇ °æÁ¦¿Í ±â¼ú ¼ö·ÅÀ¸·Î ÀÎÇØ ÇâÈÄ 10³â°£ Å©°Ô ³·¾ÆÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½Ê°ú Çù·ÂÀû ÇÁ·¹ÀÓ¿öÅ©´Â ½ÇÇè½Ç ±Ô¸ðÀÇ ½ÇÁõ ½ÇÇè°ú ½ÇÁ¦ ÀÀ¿ë »çÀÌÀÇ °£±ØÀ» Á¼È÷´Â µ¥ µµ¿òÀÌ µÇ¸ç, DNA ÀúÀå »ê¾÷ÀÇ »ó¾÷Àû ¼º¼÷À¸·Î °¡´Â ±æÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
DNA µ¥ÀÌÅÍ ½ºÅ丮Áö ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
DNA µ¥ÀÌÅÍ ½ºÅ丮Áö ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ÃÖÁ¾ »ç¿ëÀÚ ¼ö¿ä, µ¥ÀÌÅÍ ÀúÀå Àü·«ÀÇ º¯È¿¡ ±â¹ÝÇÑ ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â 2025³â±îÁö 180Á¦Å¸¹ÙÀÌÆ® ÀÌ»ó¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â Àü ¼¼°è µ¥ÀÌÅÍÀÇ Áö¼Ó ºÒ°¡´ÉÇÑ Áõ°¡·Î, ±âÁ¸ ½ºÅ丮Áö ±â¼ú·Î´Â ±Ô¸ð, Áö¼Ó°¡´É¼º, ¼ö¸í Ãø¸é¿¡¼ ´ëÀÀÇÒ ¼ö ¾ø½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù. DNAÀÇ µ¶º¸ÀûÀÎ µ¥ÀÌÅÍ ¹Ðµµ¿Í º¸Á¸ ±â°£Àº ƯÈ÷ Á¤ºÎ ±â°ü, ¹Ú¹°°ü, °úÇÐ ¿¬±¸ ±â°ü°ú °°ÀÌ °í°¡ÀÇ Àå±â µ¥ÀÌÅÍ ¼¼Æ®¸¦ °ü¸®ÇÏ´Â ±â°ü¿¡°Ô ¸Å·ÂÀûÀÎ ¾ÆÄ«ÀÌºê ½ºÅ丮Áö ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ¼ºÀå µ¿·ÂÀº ¹ÙÀÌ¿À ¿£Áö´Ï¾î¸µ°ú ¹Ì¼¼ °¡°øÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î DNA ÇÕ¼º ¹× ¿°±â¼¿ ºÐ¼® ºñ¿ëÀÌ ³·¾ÆÁö¸é¼ ƯÁ¤ ÀÌ¿ë »ç·Ê¿¡¼ DNA ½ºÅ丮Áö°¡ °æÁ¦ÀûÀ¸·Î °æÀï·ÂÀ» °®Ãß°Ô µÇ¾ú½À´Ï´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ, ȯ°æÀûÀ¸·Î Áö¼Ó °¡´ÉÇÑ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¶Á÷Àº ¿¡³ÊÁö ¼Òºñ°¡ Àû°í ¹°¸®Àû ¹× ÀÌ»êÈź¼Ò ¹èÃâ·®ÀÌ ÀûÀº ½ºÅ丮Áö ½Ã½ºÅÛÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶, ÀÇ·á, ±¹¹æ µîÀÇ ºÐ¾ß¿¡¼´Â ±â¹Ð ±â·ÏÀ» ¼ö½Ê ³â¿¡¼ ¼ö¹é³âµ¿¾È ¾ÈÀüÇÏ°Ô º¸°üÇØ¾ß ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. DNA´Â ȯ°æ ¾ÇÈ¿Í ±â¼úÀû ³ëÈÄÈ¿¡ °Çϱ⠶§¹®¿¡ ±ÔÁ¦°¡ ¸¹Àº ȯ°æ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ƯÈ÷ ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷ ¹× µ¥ÀÌÅÍ »ç¿ë·®ÀÌ ¸¹Àº ¾÷°è¿¡¼ »ç¿ëÀÚ ÇൿÀÇ º¯È´Â ¹Ì·¡ ÁöÇâÀû Àü·«ÀÇ ÀÏȯÀ¸·Î ÃÖ÷´Ü ½ºÅ丮Áö ¸Åü¸¦ Ž»öÇÏ´Â µ¥¿¡ ±àÁ¤ÀûÀΠŵµ¸¦ º¸À̰í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, º¥Ã³Ä³ÇÇÅаú Á¤ºÎ Áö¿ø R&D ÇÁ·Î±×·¥À¸·ÎºÎÅÍÀÇ ÀÚ±Ý Á¶´ÞÀÌ Áõ°¡ÇÏ¸é¼ Á¦Ç° °³¹ß ¹× ÀÎÇÁ¶ó È®ÃæÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. AI, ·Îº¿°øÇÐ, DNA ³ª³ë±¸Á¶¸¦ °áÇÕÇÑ ÅëÇÕ ¼Ö·ç¼ÇÀÇ ÃâÇöµµ È®Àå °¡´ÉÇϰí ÀÚµ¿ÈµÈ DNA µ¥ÀÌÅͼ¾ÅÍÀÇ Åä´ë¸¦ ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù°¢ÀûÀÎ ¿äÀεéÀÌ °áÇյǾî DNA µ¥ÀÌÅÍ ÀúÀåÀº Æ´»õ Çõ½Å¿¡¼ ¼¼°è µ¥ÀÌÅÍ °ü¸® »ýŰèÀÇ ±â¹Ý ±â¼ú·Î ÁøÈÇÒ ¼ö ÀÖ´Â ¹ßÆÇÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.
ºÎ¹®
À¯Çü(Ŭ¶ó¿ìµå DNA µ¥ÀÌÅÍ º¸°ü, On-Premise DNA µ¥ÀÌÅÍ º¸°ü), ±â¼ú(¹è¿ ±â¹Ý DNA µ¥ÀÌÅÍ º¸°ü ±â¼ú, ±¸Á¶ ±â¹Ý DNA µ¥ÀÌÅÍ º¸°ü ±â¼ú), ÃÖÁ¾»ç¿ëÀÚ(Á¤ºÎ°è ÃÖÁ¾»ç¿ëÀÚ, ÇコÄÉ¾î ¹× ¹ÙÀÌ¿À±â¼ú ÃÖÁ¾»ç¿ëÀÚ, ¹Ìµð¾î ¹× Åë½Å ÃÖÁ¾»ç¿ëÀÚ)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global DNA Data Storage Market to Reach US$3.1 Billion by 2030
The global market for DNA Data Storage estimated at US$82.0 Million in the year 2024, is expected to reach US$3.1 Billion by 2030, growing at a CAGR of 83.7% over the analysis period 2024-2030. Cloud DNA Data Storage, one of the segments analyzed in the report, is expected to record a 75.4% CAGR and reach US$1.6 Billion by the end of the analysis period. Growth in the On-Premise DNA Data Storage segment is estimated at 96.5% CAGR over the analysis period.
The U.S. Market is Estimated at US$21.6 Million While China is Forecast to Grow at 79.5% CAGR
The DNA Data Storage market in the U.S. is estimated at US$21.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$444.1 Million by the year 2030 trailing a CAGR of 79.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 74.8% and 72.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 58.7% CAGR.
Global DNA Data Storage Market - Key Trends & Drivers Summarized
Is DNA Emerging as the Ultimate Solution to the World’s Data Overload Crisis?
As global data generation reaches unprecedented volumes, traditional storage systems are struggling to keep pace with the exponential increase in digital information. From personal devices and cloud platforms to large-scale scientific databases, the volume of data being produced is outgrowing the physical infrastructure needed to store it. Enter DNA data storage-a revolutionary approach that encodes digital information in synthetic DNA strands, offering massive storage density, long-term stability, and sustainability. DNA, the fundamental molecule of life, can theoretically store over 215 petabytes per gram, surpassing any magnetic or optical storage medium by several orders of magnitude. Researchers and tech giants alike are increasingly exploring DNA as a viable medium for archival data storage, particularly for cold storage applications where access is infrequent but data longevity is critical. Institutions dealing with massive datasets-like genomic repositories, astronomical observatories, and film archives-are showing keen interest in DNA-based systems due to their capacity to preserve data for thousands of years without degradation. Additionally, DNA’s resistance to obsolescence and compatibility with existing biological systems adds to its allure. In contrast to silicon-based media, which require constant energy and cooling, DNA can remain stable in dry environments for centuries. The potential for miniaturization is another game-changer; entire data centers could, in theory, be reduced to volumes smaller than a sugar cube. As synthetic biology and nanotechnology continue to advance, DNA data storage is transitioning from a speculative concept to a tangible solution poised to revolutionize the future of data archiving.
How Are Technological Breakthroughs Accelerating the Feasibility of DNA-Based Storage?
The promise of DNA data storage is being unlocked by remarkable progress in several enabling technologies-chief among them DNA synthesis, sequencing, and encoding algorithms. Until recently, the high cost and slow speed of writing and reading DNA made the concept commercially unfeasible. However, the rise of high-throughput, low-cost DNA synthesis technologies-such as enzymatic synthesis and microarray-based methods-is drastically reducing costs and increasing data writing speed. On the decoding side, next-generation sequencing (NGS) technologies are evolving to become faster, cheaper, and more accurate, enhancing the efficiency of data retrieval. Moreover, the development of novel encoding schemes-such as Huffman coding, error-correction algorithms, and strand redundancy models-is making the digital-to-biological conversion more reliable. These innovations help mitigate errors such as strand loss, mutation, or misreading during synthesis and sequencing, ensuring the fidelity of stored data. Another important advancement is the use of automated microfluidics and lab-on-a-chip platforms, which can handle thousands of DNA strands in parallel and facilitate faster sample processing. Several tech companies and research institutions have begun to demonstrate proof-of-concept systems that can store and retrieve images, videos, and text files from synthetic DNA. Cloud computing companies are particularly interested in DNA storage for long-term archival data, where latency is less important than density and durability. At the same time, AI and machine learning are being used to optimize sequence design and reduce redundancy, making the entire system more efficient. Collectively, these breakthroughs are closing the gap between experimental DNA storage models and commercially viable systems, laying the groundwork for scalable deployment in the near future.
Is Industry Collaboration Driving Commercialization and Standardization in DNA Storage?
The DNA data storage market is moving beyond the confines of academic research, propelled by growing collaboration between industries, research institutions, and consortia working toward commercialization and global standardization. Tech giants like Microsoft, IBM, and Google, alongside leading research universities, are investing in pilot projects that aim to convert digital libraries into synthetic DNA archives. Meanwhile, startups specializing in synthetic biology and data science are developing modular platforms and custom solutions that make DNA storage more accessible to commercial clients. One major driver behind this collaborative momentum is the formation of alliances such as the DNA Data Storage Alliance, which aims to create universal standards for DNA data formats, storage protocols, and interoperability frameworks. This effort is crucial to ensure that DNA-stored data remains usable and readable decades or centuries into the future, regardless of vendor or platform. Governments are also playing a role by funding long-term digital preservation projects and considering DNA as a strategic medium for safeguarding national archives. Furthermore, the intellectual property landscape is evolving rapidly, with patents being filed for everything from encoding techniques to DNA container designs and access systems. Service models are also beginning to take shape, with companies offering “DNA as a service” for clients seeking ultra-durable backup storage. While the current costs of encoding and decoding remain high, economies of scale and technological convergence are expected to bring them down significantly over the next decade. These partnerships and collaborative frameworks are helping bridge the gap between lab-scale demonstrations and real-world applications, accelerating the DNA storage industry’s path toward commercial maturity.
What Forces Are Fueling the Growth of the DNA Data Storage Market?
The growth in the DNA data storage market is driven by several factors rooted in technological evolution, end-user demand, and shifts in data preservation strategies. One of the primary drivers is the unsustainable growth of global data, projected to reach over 180 zettabytes by 2025, which traditional storage technologies simply cannot accommodate in terms of scale, sustainability, or longevity. DNA’s unmatched data density and shelf life make it an attractive alternative for archival storage, especially for institutions managing high-value, long-term datasets like government agencies, museums, and scientific research bodies. Another growth catalyst is the falling cost of DNA synthesis and sequencing, fueled by advances in bioengineering and microfabrication, which are making DNA storage economically competitive for specific use cases. Additionally, the increasing focus on environmentally sustainable technologies is pushing organizations to explore storage systems that consume less energy and have a smaller physical and carbon footprint-criteria that DNA storage systems meet exceptionally well. The market is also being driven by the rise of regulatory compliance in data preservation, where sectors like finance, healthcare, and defense are required to store sensitive records securely for decades or even centuries. DNA’s resistance to environmental decay and technological obsolescence makes it ideal for these regulatory-heavy environments. Shifts in user behavior, particularly among large tech firms and data-heavy industries, show a growing openness to exploring cutting-edge storage mediums as part of future-proofing strategies. Moreover, increased funding from venture capital and government-backed R&D programs is accelerating product development and infrastructure expansion. The emergence of integrated solutions combining AI, robotics, and DNA nanostructures is also laying the groundwork for scalable, automated DNA data centers. Together, these multifaceted drivers are setting the stage for DNA data storage to evolve from a niche innovation into a foundational technology in the global data management ecosystem.
SCOPE OF STUDY:
The report analyzes the DNA Data Storage market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (Cloud DNA Data Storage, On-Premise DNA Data Storage); Technology (Sequence-based DNA Data Storage Technology, Structure-based DNA Data Storage Technology); End-Users (Government End-Users, Healthcare & Biotechnology End-Users, Media & Telecommunication End-Users)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 32 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.