![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1799157
¼¼°èÀÇ Â÷¼¼´ë ¾Æºñ¿À´Ð½º ½ÃÀåNext-Generation Avionics |
¼¼°èÀÇ Â÷¼¼´ë ¾Æºñ¿À´Ð½º ½ÃÀåÀº 2030³â±îÁö 50¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 30¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Â÷¼¼´ë ¾Æºñ¿À´Ð½º ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 8.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 50¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ °ü¸® ½Ã½ºÅÛ ¾Æºñ¿À´Ð½º´Â CAGR 7.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 23¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Åë½Å ½Ã½ºÅÛ ¾Æºñ¿À´Ð½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 11.2%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 7¾ï 8,510¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.7%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ Â÷¼¼´ë ¾Æºñ¿À´Ð½º ½ÃÀåÀº 2024³â¿¡ 7¾ï 8,510¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 8.7%·Î 2030³â±îÁö 7¾ï 9,820¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 8.0%¿Í 7.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 7.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ Â÷¼¼´ë ¾Æºñ¿À´Ð½º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
Ç×°ø¿ìÁÖ »ê¾÷¿¡¼ Â÷¼¼´ë Ç×°øÀüÀÚ ½Ã½ºÅÛÀ¸·Î ÀüȯÇÏ´Â ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?
Ç×°ø »ê¾÷Àº Å« º¯ÈÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖÀ¸¸ç, Â÷¼¼´ë Ç×°ø ÀüÀÚ°øÇÐÀº ´õ ¾ÈÀüÇϰí, ´õ ½º¸¶Æ®Çϰí, ´õ È¿À²ÀûÀÎ ºñÇà ¿î¿µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Ç×°ø±â ³» Åë½Å, Ç×¹ý, ºñÇà Á¦¾î, ½Ã½ºÅÛ ¸ð´ÏÅ͸µ¿¡ »ç¿ëµÇ´Â ÀüÀÚ ½Ã½ºÅÛÀÎ Ç×°ø ÀüÀÚ°øÇÐÀº ¿¬ºñ È¿À²¼º, °ø¿ª ÃÖÀûÈ, ÀÚµ¿È, ´õ¿í ¾ö°ÝÇØÁø ¼¼°è ¾ÈÀü ¹× ȯ°æ ±ÔÁ¦¿¡ ´ëÇÑ ´ëÀÀ µî Áõ°¡ÇÏ´Â ¼ö¿ä¿¡ ¸ÂÃß¾î ÁøÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´õ ÀÌ»ó Á¤ÀûÀÎ Á¶Á¾¼® ¼³ºñ·Î¼°¡ ¾Æ´Ï¶ó, ½Ç½Ã°£ ÀÇ»ç°áÁ¤°ú ¿¹ÃøÀû ¿î¿µÀ» Áö¿øÇÏ´Â µ¿ÀûÀÌ°í ¾÷±×·¹ÀÌµå °¡´ÉÇÑ µðÁöÅÐ ¾ÆÅ°ÅØÃ³·Î Àνĵǰí ÀÖ½À´Ï´Ù.
Â÷¼¼´ë Ç×°ø ÀüÀÚ°øÇÐÀº Á¡Á¡ ´õ º¹ÀâÇØÁö´Â Ç×°ø ±³Åë °ü¸®, ÀÚÀ² ºñÇà ±â´É, µ¥ÀÌÅÍ Áý¾àÀû ÀÓ¹«¿¡ ´ëÀÀÇϱâ À§ÇØ ±º¿ë±â¿Í ¹Î°£ Ç×°ø±â Ç÷§Æû ¸ðµÎ¿¡¼ ºü¸£°Ô äÅõǰí ÀÖ½À´Ï´Ù. ÃֽŠÇ×°øÀüÀÚ Á¦Ç°±ºÀº ´Ù±â´É µð½ºÇ÷¹ÀÌ, ÅÍÄ¡½ºÅ©¸°, ÇÕ¼º ºñÀü, °ÈµÈ GPS µî ÷´Ü Çϵå¿þ¾î¿Í ÀΰøÁö´É(AI), ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, »çÀ̹ö ³»¼ºÀ» °®Ãá ºñÇà ½Ã½ºÅÛ µî °·ÂÇÑ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÌ ÅëÇյǾî ÀÖ½À´Ï´Ù. À» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ¹Î°£ Ç×°ø ºÐ¾ß¿¡¼´Â »óȲ ÀÎ½Ä ´É·Â Çâ»ó, ¿¬ºñ °³¼±, Á¶Á¾»çÀÇ ¾÷¹« ºÎ´ã °æ°¨, ±¹¹æ ºÐ¾ß¿¡¼´Â °í¼Ó µ¥ÀÌÅÍ ¸µÅ©, ¼¾¼ À¶ÇÕ, ºÐÀï °ø¿ª¿¡¼ÀÇ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ Åë½ÅÀ» Áö¿øÇÕ´Ï´Ù.
±â¼ú ¼ö·ÅÀÌ Ç×°ø ÀüÀÚ°øÇÐÀÇ ´É·ÂÀ» ¾î¶»°Ô ÀçÁ¤ÀÇÇϰí Àִ°¡?
µðÁöÅÐ Æ®À© ±â¼ú, ¿§Áö ÄÄÇ»ÆÃ, AI, À§¼º ±â¹Ý ³»ºñ°ÔÀ̼ÇÀÇ À¶ÇÕÀº Ç×°øÀüÀÚ ½Ã½ºÅÛÀÇ ±â´ÉÀ» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ Æ®À© ¸ðµ¨Àº Ç×°øÀüÀÚ ¼ÒÇÁÆ®¿þ¾î¿¡ ÅëÇյǰí ÀÖÀ¸¸ç, Ç×°ø±â ½Ã½ºÅÛÀº ½Ç½Ã°£À¸·Î ¼º´É ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇϰí, ½Ã½ºÅÛ °íÀåÀ» ¿¹ÃøÇϰí, ½ÃÁ¤ Á¶Ä¡¸¦ Á¦¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÑÆí, ¿§Áö AI´Â ·¹ÀÌ´õ, ¶óÀÌ´õ, ȯ°æ ¼¾¼ÀÇ ¹æ´ëÇÑ µ¥ÀÌÅÍ ½ºÆ®¸²À» ¿Âº¸µå¿¡¼ ó¸®ÇÏ¿© Áö»ó°üÁ¦¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í ½Å¼ÓÇϰí ÀÚÀ²ÀûÀÎ ÀÇ»ç°áÁ¤À» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
÷´Ü µð½ºÇ÷¹ÀÌ ½Ã½ºÅÛÀº ÇöÀç 3D ÁöÇü ¸ÅÇÎ, ÇÕ¼º ½Ã°¢Àû ¿À¹ö·¹ÀÌ, ½Ç½Ã°£ ³¯¾¾ ½Ã°¢È¸¦ ÅëÇØ Á¶Á¾»ç¿¡°Ô ½Ã¾ß°¡ ÁÁÁö ¾ÊÀº »óȲ¿¡¼ÀÇ »óȲ ÀνÄÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. À§¼º ±â¹Ý ADS-B(ÀÚµ¿ Á¾¼Ó °¨½Ã ¹æ¼Û), °üÁ¦»ç-Á¶Á¾»ç µ¥ÀÌÅ͸µÅ© Åë½Å(CPDLC), ¿ìÁÖ ±â¹Ý VHF µ¥ÀÌÅ͸µÅ©¿Í °°Àº Åë½Å ±â¼úÀº Ç×°ø±â¿Í Ç×°ø °üÁ¦ ½Ã½ºÅÛ °£ÀÇ Àü ¼¼°è Ä¿¹ö¸®Áö¿Í ¿øÈ°ÇÑ »óÈ£ ÀÛ¿ëÀ» °¡´ÉÇÏ°Ô Çϸç, ƯÈ÷ ±ØÁö Ç×·Î ¹× ÇØ¾ç¿¡¼ÀÇ Æ¯È÷ ±ØÁö Ç×·Î ¹× ÇØ¾ç ¿îÇ׿¡¼ Áß¿äÇÕ´Ï´Ù.
FACE(Future Airborne Capability Environment) ¹× MOSA(Modular Open Systems Approach)¿Í °°Àº °³¹æÇü Ç×°øÀüÀÚ ¾ÆÅ°ÅØÃ³´Â ±º¿ë ¹× ¹Î¼ö ÇÁ·Î±×·¥ Àü¹Ý¿¡ °ÉÃÄ È®»êµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·¹ÀÓ¿öÅ©´Â ¸ðµâÈ, Å©·Î½º Ç÷§Æû ¼ÒÇÁÆ®¿þ¾î ÅëÇÕ, Çϵå¿þ¾î È®À强, »õ·Î¿î ±â´ÉÀÇ ½Å¼ÓÇÑ ¹èÆ÷ ¹× ¹Ì¼Ç ¾÷±×·¹À̵åÀÇ ÇÙ½ÉÀÌ µÇ´Â ¸ðµâÈ, Å©·Î½º Ç÷§Æû ¼ÒÇÁÆ®¿þ¾î ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ´Â Ç×°øÀüÀÚ ½Ã½ºÅÛÀÌ ÁøÈÇÏ´Â ¿µ°ø Á¤Ã¥, »çÀ̹ö º¸¾È À§Çù, µµ½É Ç×°ø ¸ðºô¸®Æ¼(UAM) ¼ö¿ä¿¡ ´ëÀÀÇØ¾ß ÇÏ´Â ½Ã´ë¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù.
Ç×°ø ÀüÀÚ°øÇÐÀÇ Çö´ëȸ¦ °¡¼ÓÈÇϰí ÀÖ´Â Ç×°ø±â Ä«Å×°í¸®¿Í Áö¿ªÀº?
º¸À×, ¿¡¾î¹ö½º, ¿¥ºê¶ó¿¡¸£¿Í °°Àº OEMÀÌ ÁÖµµÇÏ´Â ¹Î°£ Ç×°ø ºÎ¹®Àº ¿¬·á Àý°¨, ±â³» ¿¬°á¼º, À¯Áöº¸¼ö ÃÖÀûÈ¿¡ ´ëÇÑ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó ÇùÆøµ¿Ã¼, ±¤Æøµ¿Ã¼, Áö¿ª Á¦Æ®±âÀÇ Ç×°ø ÀüÀÚ°øÇÐ ¾÷±×·¹À̵忡 ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ºñÁî´Ï½º Á¦Æ®±â, Åͺ¸ÇÁ·Ó, °æºñÇà±â´Â NextGen ¹× SESAR(Single European Sky ATM Research) ±¸»ó¿¡ ´ëÀÀÇϱâ À§ÇØ ±¸Çü Ç÷§Æû¿¡ ±Û·¡½º, ÅÍÄ¡½ºÅ©¸° Á¶Á¾¼®, µðÁöÅÐ ÀÚµ¿Á¶Á¾ ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. Á¶Á¾¼®, ÅÍÄ¡½ºÅ©¸° Ç×°øÀüÀÚ, µðÁöÅÐ ÀÚµ¿Á¶Á¾ ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù.
±º¿ë Ç×°ø±â´Â Ç×°øÀüÀÚ ±â¼ú Çõ½ÅÀÌ ±âü ÀçÁ¶ÇÕ ÇÁ·Î±×·¥ÀÇ Áß½ÉÀÌ µÇ°í ÀÖ´Â ¶Ç ´Ù¸¥ °í¼ºÀå ºÐ¾ßÀÔ´Ï´Ù. ÀüÅõ±â, ¼ö¼Û±â, ¹«ÀÎÇ×°ø½Ã½ºÅÛ(UAS)Àº ÀüÀÚÀü, GPS¸¦ ¹«½ÃÇÑ Ç×¹ý, ¾ÈÀüÇÑ µ¥ÀÌÅÍ ¸µÅ©, ¸ÖƼ µµ¸ÞÀÎ ¿î¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Ç×°øÀüÀÚ°øÇÐÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ȸÀüÀÍ Ç×°ø±â ¶ÇÇÑ Ã·´Ü Ç×°øÀüÀÚ ±â¼úÀ» ÅëÇØ ÀÓ¹« °ü¸® ´É·ÂÀÌ °ÈµÇ°í ÀÖ½À´Ï´Ù.
Áö¿ªº°·Î´Â ºÏ¹Ì°¡ ³Ø½ºÆ®Á¨ Ç×°ø°üÁ¦ ÀÎÇÁ¶ó¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ, ±ºÀÇ Çö´ëÈ ¹× ´ë±Ô¸ð Ç×°ø±â µµÀÔ ±â¹Ý¿¡ ÈûÀÔ¾î ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. À¯·´Àº SESAR ÁÖµµÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ³ì»ö Ç×°ø ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ À̸¦ µû¸£°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, Àεµ, ÀϺ», Çѱ¹ µî Áö¿ª Ç×°ø ³×Æ®¿öÅ©ÀÇ È®´ë, ±¹¹æ ¿¹»ê Áõ°¡, Ç×°ø±â Á¦Á¶ Ȱµ¿ÀÇ È°¼ºÈ·Î ÀÎÇØ Àü·«Àû ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶óƾ¾Æ¸Þ¸®Ä«¿Í Áßµ¿Àº ³ëÈÄÈµÈ Ç×°ø±â¸¦ ±³Ã¼ÇÏ°í ±¹°æÀ» ³Ñ´Â ¿µ°ø Ç×¹ý ½Ã½ºÅÛÀ» °³¼±ÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
Â÷¼¼´ë ¾Æºñ¿À´Ð½º ¼¼°è ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
¼¼°è Â÷¼¼´ë Ç×°øÀüÀÚ ½ÃÀåÀÇ ¼ºÀåÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ Çʿ伺, Ç×°ø ±³Åë ¹Ðµµ Áõ°¡, »çÀ̹ö º¸¾È ¿ä±¸ »çÇ× Áõ°¡, Àü±â Ç×°ø±â ¹× ÀÚÀ² Ç×°ø±âÀÇ ÃâÇö µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ç×°ø»ç´Â Ç×°ø±â ¿î¿µ ÃÖÀûÈ, ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò, ½Â°´ °æÇè Çâ»ó¿¡ ´ëÇÑ ¾Ð¹ÚÀ» ¹Þ°í ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀº ¿¹Ãø À¯Áöº¸¼ö, ºñÇà ÃÖÀûÈ, ¿øÈ°ÇÑ Áö»ó-°øÁß Åë½ÅÀ» Á¦°øÇÏ´Â Áö´ÉÇü Ç×°øÀüÀÚ Ç÷§Æû¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù.
FAA, EASA, ICAO µî Á¤ºÎ ¸í·É ¹× Ç×°ø ´ç±¹ÀÌ ADS-B, CPDLC, PBN(Performance Based Navigation)°ú °ü·ÃµÈ Ç×°øÀüÀÚ °ü·Ã ÄÄÇöóÀ̾𽺠±âÇÑÀ» °Á¦Çϰí ÀÖ¾î ½Å±Ô µµÀÔ ¹× °³Á¶ ±âȸ°¡ ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. Ä¿³ØÆ¼µå Ç×°ø±â »ýŰè¿Í eVTOL(Àüµ¿½Ä ¼öÁ÷ÀÌÂø·ú(eVTOL)·ÎÀÇ ÀüȯÀº °íµµ·Î ÀÚµ¿ÈµÈ ºñÇà Á¶ÀÛÀ» Áö¿øÇÒ ¼ö ÀÖ´Â Ãʰ淮, ÀúÀü·Â, ¸ðµâ½Ä Ç×°øÀüÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.
±¹¹æ °ü·Ã ±â¾÷°ú Ç×°ø¿ìÁÖ ½ºÅ¸Æ®¾÷ÀÇ ±â¼ú ÅõÀÚ´Â AI¸¦ Ȱ¿ëÇÑ ³»ºñ°ÔÀ̼Ç, ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ¹«¼±, »çÀ̹ö º¸¾È ±â³» ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¿¬±¸°³¹ßÀ» °ÈÇϰí ÀÖ½À´Ï´Ù. Ç×°øÀüÀÚ Á¦Á¶¾÷ü¿Í Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ±â¾÷°úÀÇ Àü·«Àû Çù¾÷Àº µ¥ÀÌÅÍ ºÐ¼®, Â÷·® °ü¸®, µðÁöÅÐ Æ®À©ÀÇ ¹èÆ÷¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ÀÌÇØ°ü°èÀÚµéÀÌ ¿î¿µ ź·Â¼º, ÄÄÇöóÀ̾ð½º, ±â¼ú ¹Îø¼ºÀ» ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, Â÷¼¼´ë Ç×°ø ÀüÀÚ°øÇÐÀº ¼¼°è Ç×°ø Çö´ëÈ ·Îµå¸ÊÀÇ ÇÙ½ÉÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
ºÎ¹®
À¯Çü(°ü¸® ½Ã½ºÅÛ ¾Æºñ¿À´Ð½º, Åë½Å ½Ã½ºÅÛ ¾Æºñ¿À´Ð½º, ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ ¾Æºñ¿À´Ð½º, ±âŸ À¯Çü), ¿ëµµ(¹Î°£ Ç×°ø±â, ±º¿ë Ç×°ø±â)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Next-Generation Avionics Market to Reach US$5.0 Billion by 2030
The global market for Next-Generation Avionics estimated at US$3.0 Billion in the year 2024, is expected to reach US$5.0 Billion by 2030, growing at a CAGR of 8.9% over the analysis period 2024-2030. Management System Avionics, one of the segments analyzed in the report, is expected to record a 7.4% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Communications System Avionics segment is estimated at 11.2% CAGR over the analysis period.
The U.S. Market is Estimated at US$785.1 Million While China is Forecast to Grow at 8.7% CAGR
The Next-Generation Avionics market in the U.S. is estimated at US$785.1 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$798.2 Million by the year 2030 trailing a CAGR of 8.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.0% and 7.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.3% CAGR.
Global Next-Generation Avionics Market - Key Trends & Drivers Summarized
What’s Driving the Shift Toward Next-Generation Avionics Systems in Aerospace?
The aviation industry is undergoing a significant transformation, with next-generation avionics playing a central role in enabling safer, smarter, and more efficient flight operations. Avionics, the electronic systems used in aircraft for communication, navigation, flight control, and systems monitoring, are evolving in response to the growing demand for fuel efficiency, airspace optimization, automation, and compliance with stricter global safety and environmental regulations. These systems are no longer viewed as static cockpit fixtures but as dynamic and upgradeable digital architectures supporting real-time decision-making and predictive operations.
Next-gen avionics are being rapidly adopted by both military and commercial aircraft platforms to address the increasing complexity of air traffic management, autonomous flight capabilities, and data-intensive missions. Modern avionics suites integrate advanced hardware-such as multifunctional displays, touchscreens, synthetic vision, and enhanced GPS-with powerful software solutions powered by artificial intelligence (AI), real-time data analytics, and cyber-resilient flight systems. In commercial aviation, this translates into better situational awareness, fuel economy, and reduced pilot workload, while in defense applications, these systems support high-speed data links, sensor fusion, and mission-critical communication in contested airspaces.
How Are Technology Convergences Redefining Avionics Capabilities?
The convergence of digital twin technology, edge computing, AI, and satellite-based navigation is redefining the functionality of avionics systems. Digital twin models are being embedded within avionics software, allowing aircraft systems to simulate performance scenarios, anticipate system failures, and suggest corrective actions in real-time. Meanwhile, edge AI enables onboard processing of vast data streams from radar, lidar, and environmental sensors, facilitating rapid, autonomous decision-making without reliance on ground control.
Advanced display systems now offer pilots 3D terrain mapping, synthetic vision overlays, and real-time weather visualization, improving situational awareness under low-visibility conditions. Communication technologies like satellite-based ADS-B (Automatic Dependent Surveillance-Broadcast), Controller-Pilot Data Link Communication (CPDLC), and space-based VHF data links are enabling global coverage and seamless interaction between aircraft and air traffic control systems, particularly important in polar routes and oceanic operations.
Open avionics architectures such as FACE (Future Airborne Capability Environment) and MOSA (Modular Open Systems Approach) are gaining traction across military and civil programs. These frameworks allow modularity, cross-platform software integration, and hardware scalability-key for rapid deployment of new features and mission upgrades. This is essential in an era when avionics systems need to keep pace with evolving airspace policies, cybersecurity threats, and urban air mobility (UAM) demands.
Which Aircraft Categories and Regions Are Accelerating Avionics Modernization?
The commercial aviation sector, led by OEMs such as Boeing, Airbus, and Embraer, is heavily investing in avionics upgrades across narrow-body, wide-body, and regional jets to meet rising expectations around fuel savings, in-flight connectivity, and maintenance optimization. Avionics modernization is also surging in general aviation, with business jets, turboprops, and light aircraft retrofitting older platforms with glass cockpits, touchscreen avionics, and digital autopilot systems to comply with NextGen and SESAR (Single European Sky ATM Research) initiatives.
Military aviation is another high-growth segment where avionics innovation is central to fleet recapitalization programs. Fighter jets, transport aircraft, and unmanned aerial systems (UAS) are integrating avionics that enable electronic warfare, GPS-denied navigation, secure datalinks, and multi-domain operations. Rotary-wing aircraft are also seeing enhanced mission management capabilities through advanced avionics.
Regionally, North America dominates due to strong investment in NextGen air traffic control infrastructure, military modernization, and a large installed base of aircraft. Europe follows closely with SESAR-led initiatives and rising demand for green aviation technologies. Asia-Pacific is emerging as a strategic market with expanding regional aviation networks, growing defense budgets, and increased aircraft manufacturing activities, especially in China, India, Japan, and South Korea. Latin America and the Middle East are focusing on upgrading aging fleets and improving cross-border airspace navigation systems.
What Is Fueling Growth in the Global Next-Generation Avionics Market?
The growth in the global next-generation avionics market is driven by several factors, including the need for real-time data processing, increasing air traffic density, heightened cybersecurity requirements, and the emergence of electric and autonomous aircraft. Airlines are under pressure to optimize fleet operations, reduce carbon emissions, and enhance passenger experience-all of which are supported by intelligent avionics platforms offering predictive maintenance, flight optimization, and seamless ground-to-air communication.
Government mandates and aviation authorities such as FAA, EASA, and ICAO are enforcing avionics-related compliance deadlines related to ADS-B, CPDLC, and Performance-Based Navigation (PBN), compelling both new installations and retrofit opportunities. The shift toward connected aircraft ecosystems and eVTOLs (electric vertical take-off and landing) is also catalyzing demand for ultra-lightweight, low-power, and modular avionics systems capable of supporting highly automated flight operations.
Technological investments from defense contractors and aerospace startups are intensifying R&D in AI-powered navigation, software-defined radios, and cybersecure onboard networks. Strategic collaborations between avionics manufacturers and cloud computing firms are reshaping data analytics, fleet management, and digital twin deployment. As aerospace stakeholders prioritize operational resilience, compliance, and technological agility, next-generation avionics will remain a cornerstone of the global aviation modernization roadmap.
SCOPE OF STUDY:
The report analyzes the Next-Generation Avionics market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (Management System Avionics, Communications System Avionics, Navigation System Avionics, Other Types); Application (Civil Aircraft, Military Aircraft)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 34 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.