½ÃÀ庸°í¼­
»óǰÄÚµå
1147472

¼¼°èÀÇ ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® ¸®Æ÷Æ® : ¿ëµµº°(»ö°èÃø, È­ÇÐ ³óµµ), ÃÖÁ¾»ç¿ëÀÚº°(Á¦¾à ¾÷°è, È­ÇÐ ¾÷°è), ºÎ¹®º° ¿¹Ãø(2022-2030³â)

In-line UV-vis Spectroscopy Market Size, Share & Trends Analysis Report By Application (Color Measurement, Chemical Concentration), By End-user (Pharmaceutical Industry, Chemical Industry), And Segment Forecasts, 2022 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 150 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Grand View Research, Inc.ÀÇ »õ·Î¿î º¸°í¼­¿¡ µû¸£¸é ¼¼°èÀÇ ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£¿¡ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 6.50%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â±îÁö 18¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

  • ½ÃÀå ¼¼ºÐÈ­¿Í ¹üÀ§
  • Á¶»ç ¹æ¹ý
  • Á¤º¸ Á¶´Þ
    • ±¸ÀÔÇÑ µ¥ÀÌÅͺ£À̽º
    • GVR ³»ºÎ µ¥ÀÌÅͺ£À̽º
    • 2Â÷ Á¤º¸
    • 1Â÷ Á¶»ç
    • 1Â÷ Á¶»ç »ó¼¼
  • Á¤º¸ ¶Ç´Â µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ ºÐ¼® ¸ðµ¨
  • ½ÃÀå Çü¼º ¹× °ËÁõ
  • ¸ðµ¨ ¼¼ºÎ Á¤º¸
    • »óǰ À¯Åë ºÐ¼®
      • ¹æ½Ä 1 : »óǰ À¯Åë ¹æ½Ä
      • ¹æ½Ä 2 : º¸ÅÒ¾÷ Á¢±ÙÀ» »ç¿ëÇÑ ±¹°¡º° ½ÃÀå ÃßÁ¤
  • ¼¼°è ½ÃÀå : CAGR °è»ê
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
  • 2Â÷ Á¤º¸ ¸®½ºÆ®
  • 1Â÷ Á¤º¸ ¸®½ºÆ®
  • ´ë»ó
  • ¾à¾î ¸®½ºÆ®

Á¦2Àå ½ÃÀåÀÇ Á¤ÀÇ

Á¦3Àå °³¿ä

  • ½ÃÀå °³¿ä

Á¦4Àå ¼¼°èÀÇ ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : º¯¼ö, µ¿Çâ ¹× ¹üÀ§

  • ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå °èÅë Àü¸Á
    • »óÀ§ ½ÃÀå Àü¸Á
  • ħÅõ ¹× ¼ºÀå Àü¸Á ¸ÅÇÎ
  • ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ºÐ¼®
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
  • ½ÃÀå ±âȸ ºÐ¼®
  • ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : PESTLE ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • ÁÖ¿ä °Å·¡¿Í Àü·«Àû Á¦ÈÞ ºÐ¼®
    • ÇÕÀÛÅõÀÚ(JV)
    • ÀμöÇÕº´(M&A)
    • ¶óÀ̼±½Ì ¹× ÆÄÆ®³Ê½Ê
    • ±â¼ú Çù·Â
    • Àü·«Àû ¸Å°¢
  • COVID-19ÀÇ ¿µÇ⠺м®

Á¦5Àå ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : ºÎ¹® ºÐ¼®, ¿ëµµº°, 2018-2030³â(100¸¸ ´Þ·¯)

  • ¼¼°èÀÇ ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : ¿ëµµ º¯µ¿ ºÐ¼®
  • »öÃøÁ¤
  • È­Çй°Áú ³óµµ
  • ʵµ ¹× ÇìÀÌÁî ÃøÁ¤
  • µÎ²² ÃøÁ¤

Á¦6Àå ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : ºÎ¹® ºÐ¼®, ÃÖÁ¾»ç¿ëÀÚº°, 2018-2030³â(100¸¸ ´Þ·¯)

  • ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ º¯µ¿ ºÐ¼®
  • ÇÃ¶ó½ºÆ½ »ê¾÷
  • È­Çаø¾÷
  • ½Äǰ ¹× À½·á
  • Á¦¾à »ê¾÷
  • ÆäÀÎÆÃ ¹× ÄÚÆÃ »ê¾÷
  • ±âŸ

Á¦7Àå ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : -ºÎ¹® ºÐ¼®, Áö¿ªº°, 2018-2030³â(100¸¸ ´Þ·¯)

  • ÀζóÀÎ UV-vis ºÐ±¤±â ½ÃÀå : Áö¿ª º¯µ¿ ºÐ¼®
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«(MEA)
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦8Àå °æÀï ±¸µµ

  • °ø°³ ȸ»ç
    • ±â¾÷ÀÇ ½ÃÀå ÁöÀ§ ºÐ¼®
    • °æÀï ´ë½Ãº¸µå ºÐ¼®
    • Àü·«Àû ÇÁ·¹ÀÓ¿öÅ©
  • ºñ°ø°³ ȸ»ç
    • ÁÖ¿ä ½Å±Ô ±â¾÷/±â¼ú Çõ½Å ±â¾÷/Çõ½Å ±â¾÷ ¸®½ºÆ®
    • Áö¿ª ³×Æ®¿öÅ© ¸Ê
  • ±â¾÷ °³¿ä
    • X-Rite, Inc.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Hunter Associates Laboratory, Inc.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • ColVisTec AG
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Applied Analytics, Inc.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • AMETEK, Inc.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Guided Wave, Inc.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Kemtrak AB
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Endress+Hauser Management AG
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Color Consult
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Equitech Int'l Corporation
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Uniqsis Ltd
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Advanced Vision Technology Ltd.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Agilent Technologies Inc
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Shimadzu Corporation
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
    • Thermo Fisher Scientific Inc.
      • ±â¾÷ °³¿ä
      • À繫 ½ÇÀû
      • Á¦Ç° º¥Ä¡¸¶Å·
      • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê
LSH 22.11.17

In-line UV-vis Spectroscopy Market Growth & Trends:

The global in-line UV-vis spectroscopy market size is expected to reach USD 1.88 billion by 2030, registering a CAGR of 6.50% over the forecast period, according to a new report by Grand View Research, Inc. Notable technological advancements in the UV-vis spectroscopic method have accelerated the in-line monitoring of compounds using UV-vis-spectrometry across various fields, such as environmental monitoring, materials science, pharmaceutical research, and agriculture. The introduction of advanced solutions, such as enhanced silicon and InGaAs detectors & Light-emitting Diode (LED) sources, have supported the adoption of this UV-Vis spectroscopy technique, thereby driving the industry.

UV/Visible spectrophotometers are widely used by laboratories, including that associated with academia and governments, as well as other industries. The introduction of multiple regulatory guidelines for effective approval and new product development processes across various industries, such as the pharmaceutical, food & beverages, and cosmetics industries, is anticipated to increase the adoption of products. In the pharmaceutical industry, the introduction of UV-Vis spectrophotometry that operates in compliance with United States Pharmacopeia (USP), Japanese Pharmacopoeia (JP), and the European Pharmacopoeia (EP) is anticipated to drive the industry.

Internal quality management and external regulators play a crucial role in developing spectrophotometers in compliance with various established regulatory guidelines for the effective and safe use of instruments. Wavelength accuracy and repeatability are key performance parameters of the UV/VIS spectroscopic method. Thus, accurate calibration of the wavelength axis is important for applications that rely on spectroscopic techniques for compound testing, to receive regulatory approval. Furthermore, the National Institute of Standards and Technology is involved in establishing guidelines on technical specifications for the certification of spectrophotometric traceable Reference Materials. In addition, major manufacturers are providing solutions to academic institutions.

For instance, in May 2021, PASCO Scientific announced the launch of a new UV-Vis spectrometer, which offers universities a comprehensive solution for everyday applications in spectrophotometry. The COVID-19 pandemic positively impactedindustry growth. Advantages, such as high accuracy, and characterization of components, such as additives/preservatives, proteins, and nucleic acids (i.e. DNA/RNA), among others will drive the demand. This technology can also impact the time-to-result for both upstream and downstream processes including quality control. As a result of these advantages, the usage of these technologies increased during the COVID-19 pandemic. The development in the advancement of biological drugs globally is leading to the expansion of several New Biological Entities (NBEs).

Before these NBEs are modified into therapeutics, the research laboratory must precisely characterize each product and should constantly examine the quality of these products through the development process. The In-line UV-Vis spectroscopy system also allows laboratories to make considerable gains in efficacy as it can run manifold experiments at the same time, allowing laboratories to obtain more results in a similar amount of time and it also extends the opportunity to design the experiments in ways, which have not been possible earlier. For instance, in October 2018, Agilent's Cary 3500 UV-Vis spectroscopy was introduced, which is a significant tool that permits laboratories to do research accurately and more quickly.

Out of all the molecular spectroscopy methods, Nuclear Magnetic Resonance (NMR) spectroscopy is considered the most widely adopted technology, with the majority of users from pharmaceuticals or academic research. In UV-Vis spectroscopy, sample preparation processes are slow and are often operator-dependent. On the other hand, they are relatively simpler in the case of NMR and IR spectroscopy. In addition, in NMR spectroscopy, samples can be recovered as the workflow is nondestructive. These factors have driven the use of other spectroscopy methods, thereby limiting the revenue growth in this industry. Moreover, UV-Vis spectroscopy exhibited challenges in isolating matrix interferences and inefficiency in molecular structure evaluation. These factors have impeded the industry growth to a considerable extent.

In-line UV-vis Spectroscopy Market Report Highlights:

  • The color measurement segment accounted for the largest share in 2021. A large number of operating suppliers and high penetration of products in this segment have resulted in the dominance of this segment
  • Measurement of chemical concentration also accounted for a significant revenue share in 2021. An increase in demand for real-time analytical tools that monitor fermentation and bioprocesses in food & biological applications is expected to propel industry growth
  • The painting & coating industry end-user segment held the largest share in 2021 due to the rapid growth of the paint and coatings industry
  • The chemical industry segment is expected to grow at the fastest CAGR from 2022 to 2030. The high use of spectroscopy for monitoring wet chemical processes has boosted the revenue growth of the segment
  • North America dominated the global industry in 2021 owing to the presence of highly regulated industries in the U.S. and the growing demand for robust technologies
  • The rising adoption of spectroscopy services in countries like India, Singapore, and South Korea is expected to drive the Asia Pacific region at a lucrative CAGR from 2022 to 2030

Table of Contents

Chapter 1 Research Methodology

  • 1.1 Market Segmentation & Scope
    • 1.1.1 Estimates And Forecast Timeline
  • 1.2 Research Methodology
  • 1.3 Information Procurement
    • 1.3.1 Purchased Database
    • 1.3.2 Gvr's Internal Database
    • 1.3.3 Secondary Sources
    • 1.3.4 Primary Research
    • 1.3.5 Details Of Primary Research
  • 1.4 Information Or Data Analysis
    • 1.4.1 Data Analysis Models
  • 1.5 Market Formulation & Validation
  • 1.6 Model Details
    • 1.6.1 Commodity Flow Analysis
      • 1.6.1.1 Approach 1: Commodity Flow Approach
      • 1.6.1.2 Approach 2: Country-Wise Market Estimation Using Bottom-Up Approach
  • 1.7 Global Market: Cagr Calculation
  • 1.8 Research Assumptions
  • 1.9 List Of Secondary Sources
  • 1.10 List Of Primary Sources
  • 1.11 Objectives
    • 1.11.1 Objective 1:
    • 1.11.2 Objective 2:
  • 1.12 List Of Abbreviations

Chapter 2 Market Definitions

Chapter 3 Executive Summary

  • 3.1 Market Summary

Chapter 4 Global In-Line Uv-Vis Spectroscopy Market Variables, Trends, & Scope

  • 4.1 In-Line Uv-Vis Spectroscopy Market Lineage Outlook
    • 4.1.1 Parent Market Outlook
  • 4.2 Penetration And Growth Prospect Mapping
  • 4.3 Regulatory Framework
  • 4.4 Market Driver Analysis
    • 4.4.1 Expanding Applications Of In-Line Spectroscopy
    • 4.4.2 Technological Advancements Driving Product Adoption In Spectroscopy
    • 4.4.3 Active Participation Of Government And Regulatory Authorities
  • 4.5 Market Restraint Analysis
    • 4.5.1 High Adoption Of Other Spectroscopy Methods
  • 4.6 Market Opportunity Analysis
    • 4.6.1 Growing Concerns Of Food-Borne Illnesses And Adulteration
    • 4.6.2 Increase In Funds For Academic And Research Laboratories
  • 4.7 In-Line Uv-Vis Spectroscopy Market - Pestle Analysis
  • 4.8 Industry Analysis - Porter's
  • 4.9 Major Deals And Strategic Alliances Analysis
    • 4.9.1 Joint Ventures
    • 4.9.2 Mergers And Acquisitions
    • 4.9.3 Licensing And Partnership
    • 4.9.4 Technology Collaborations
    • 4.9.5 Strategic Divestments
  • 4.10 Covid-19 Impact Analysis

Chapter 5 In-Line Uv-Vis Spectroscopy Market - Segment Analysis, By Application, 2018 - 2030 (USD Million)

  • 5.1 Global In-Line Uv-Vis Spectroscopy Market: Application Movement Analysis
  • 5.2 Color Measurement
    • 5.2.1 Color Measurement Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 5.3 Chemical Concentration
    • 5.3.1 Chemical Concentration Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 5.4 Turbidity & Haze Measurement
    • 5.4.1 Turbidity & Haze Measurement Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 5.5 Thickness Measurement
    • 5.5.1 Thickness Measurement Market Estimates And Forecast, 2018 - 2030 (USD Million)

Chapter 6 In-Line Uv-Vis Spectroscopy Market- Segment Analysis, By End User, 2018 - 2030 (USD Million)

  • 6.1 In-Line Uv-Vis Spectroscopy Market: End-User Movement Analysis
  • 6.2 Plastics Industry
    • 6.2.1 Plastics Industry Estimates And Forecast, 2018 - 2030 (USD Million)
  • 6.3 Chemical Industry
    • 6.3.1 Chemical Industry Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 6.4 Food & Beverages
    • 6.4.1 Food & Beverages Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 6.5 Pharmaceutical Industry
    • 6.5.1 Pharmaceutical Industry Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 6.6 Painting & Coating Industry
    • 6.6.1 Painting & Coating Industry Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 6.7 Others
    • 6.7.1 Others Market Estimates And Forecast, 2018 - 2030 (USD Million)

Chapter 7 In-Line Uv-Vis Spectroscopy Market: - Segment Analysis, By Region, 2018 - 2030 (USD Million)

  • 7.1 In-Line Uv-Vis Spectroscopy Market: Regional Movement Analysis
  • 7.2 North America
    • 7.2.1 North America Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.2.2 U.S.
      • 7.2.2.1 U.S. Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.2.3 Canada
      • 7.2.3.1 Canada Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 7.3 Europe
    • 7.3.1 Europe Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.3.2 U.K.
      • 7.3.2.1 U.K. Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.3.3. Germany
      • 7.3.3.1 Germany Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.3.4 France
      • 7.3.4.1 France Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.3.5. Italy
      • 7.3.5.1 Italy Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.3.6 Spain
      • 7.3.6.1 Spain Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 7.4 Asia Pacific
    • 7.4.1 Asia Pacific Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.4.2 Japan
      • 7.4.2.1 Japan Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.4.3 China
      • 7.4.3.1 China Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.4.4 India
      • 7.4.4.1 India Market Estimates And Forecast, 2018-2030
    • 7.4.5 Australia
      • 7.4.5.1 Australia Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 7.5 Latin America
    • 7.5.1 Latin America Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.5.2 Brazil
      • 7.5.2.1 Brazil Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.5.3 Mexico
      • 7.5.3.1 Mexico Market Estimates And Forecast, 2018 - 2030 (USD Million)
  • 7.6 Middle East & Africa (Mea)
    • 7.6.1 Middle East & Africa Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.6.2 South Africa
      • 7.6.2.1 South Africa Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.6.3 Saudi Arabia
      • 7.6.3.1 Saudi Arabia Market Estimates And Forecast, 2018 - 2030 (USD Million)
    • 7.6.4 UAE
      • 7.6.4.1 Uae Market Estimates And Forecast, 2018 - 2030 (USD Million)

Chapter 8 Competitive Landscape

  • 8.1 Public Companies
    • 8.1.1 Company Market Position Analysis
    • 8.1.2 Competitive Dashboard Analysis
    • 8.1.3 Strategic Framework
  • 8.2 Private Companies
    • 8.2.1 List Of Key Emerging Companies/Technology Disruptors/Innovators
    • 8.2.2 Regional Network Map
  • 8.3 Company Profiles
    • 8.3.1 X-Rite, Inc.
      • 8.3.1.1 Company Overview
      • 8.3.1.2 Financial Performance
      • 8.3.1.3 Product Benchmarking
      • 8.3.1.4 Strategic Initiatives
    • 8.3.2 Hunter Associates Laboratory, Inc.
      • 8.3.2.1 Company Overview
      • 8.3.2.2 Financial Performance
      • 8.3.2.3 Product Benchmarking
      • 8.3.2.4 Strategic Initiatives
    • 8.3.3 ColVisTec AG
      • 8.3.3.1 Company Overview
      • 8.3.3.2 Financial Performance
      • 8.3.3.3 Product Benchmarking
      • 8.3.3.4 Strategic Initiatives
    • 8.3.4 Applied Analytics, Inc.
      • 8.3.4.1 Company Overview
      • 8.3.4.2 Financial Performance
      • 8.3.4.3 Product Benchmarking
      • 8.3.4.4 Strategic Initiatives
    • 8.3.5 AMETEK, Inc.
      • 8.3.5.1 Company Overview
      • 8.3.5.2 Financial Performance
      • 8.3.5.3 Product Benchmarking
      • 8.3.5.4 Strategic Initiatives
    • 8.3.6 Guided Wave, Inc.
      • 8.3.6.1 Company Overview
      • 8.3.6.2 Financial Performance
      • 8.3.6.3 Product Benchmarking
      • 8.3.6.4 Strategic Initiatives
    • 8.3.7 Kemtrak AB
      • 8.3.7.1 Company Overview
      • 8.3.7.2 Financial Performance
      • 8.3.7.3 Product Benchmarking
      • 8.3.7.4 Strategic Initiatives
    • 8.3.8 Endress+Hauser Management AG
      • 8.3.8.1 Company Overview
      • 8.3.8.2 Financial Performance
      • 8.3.8.3 Product Benchmarking
      • 8.3.8.4 Strategic Initiatives
    • 8.3.9 Color Consult
      • 8.3.9.1 Company Overview
      • 8.3.9.2 Financial Performance
      • 8.3.9.3 Product Benchmarking
      • 8.3.9.4 Strategic Initiatives
    • 8.3.10 Equitech Int'l Corporation
      • 8.3.10.1 Company Overview
      • 8.3.10.2 Financial Performance
      • 8.3.10.3 Product Benchmarking
      • 8.3.10.4 Strategic Initiatives
    • 8.3.11 Uniqsis Ltd
      • 8.3.11.1 Company Overview
      • 8.3.11.2 Financial Performance
      • 8.3.11.3 Product Benchmarking
      • 8.3.11.4 Strategic Initiatives
    • 8.3.12 Advanced Vision Technology Ltd.
      • 8.3.12.1 Company Overview
      • 8.3.12.2 Financial Performance
      • 8.3.12.3 Product Benchmarking
      • 8.3.12.4 Strategic Initiatives
    • 8.3.13 Agilent Technologies Inc
      • 8.3.13.1 Company Overview
      • 8.3.13.2 Financial Performance
      • 8.3.13.3 Product Benchmarking
      • 8.3.13.4 Strategic Initiatives
    • 8.3.14 Shimadzu Corporation
      • 8.3.14.1 Company Overview
      • 8.3.14.2 Financial Performance
      • 8.3.14.3 Product Benchmarking
      • 8.3.14.4 Strategic Initiatives
    • 8.3.15 Thermo Fisher Scientific Inc.
      • 8.3.15.1 Company Overview
      • 8.3.15.2 Financial Performance
      • 8.3.15.3 Product Benchmarking
      • 8.3.15.4 Strategic Initiatives
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦