½ÃÀ庸°í¼­
»óǰÄÚµå
1405038

¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ±Ô¸ð, Á¡À¯À² ¹× µ¿Ç⠺м® º¸°í¼­ : ¿ëµµ, ¹èÆ÷, Á¶Á÷ ±Ô¸ð, »ê¾÷, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2023-2030³â)

Marketing Analytics Software Market Size, Share & Trends Analysis Report By Application (Solution, Service), By Deployment, By Organization Size, By Industry Vertical, By Region, And Segment Forecasts, 2023 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ

Grand View Research, Inc.ÀÇ ÃֽŠº¸°í¼­¿¡ µû¸£¸é, ¼¼°è ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 16.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³»°í, 2030³â±îÁö 125¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)°ú °°Àº ÷´Ü ±â¼úÀÇ ÅëÇÕÀº ½ÃÀå¿¡ À¯¸ÁÇÑ ¼ºÀå Àü¸ÁÀ» Á¦°øÇϰí ÀÖÀ¸¸ç, AI´Â ¸¶ÄÉÆÃ ´ã´çÀÚ°¡ ´Ù¾çÇÑ ¸¶ÄÉÆÃ Ã¤³Î¿¡¼­ ÀûÀýÇÑ ºê·£µå ¸Þ½ÃÁö¸¦ Àü´ÞÇϰí, °Ë»ö °á°ú¸¦ °³¼±Çϰí, ¿øÇÏ´Â ·£µù ÆäÀÌÁö¿Í À¥ »çÀÌÆ®·Î À¯µµÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù. ¸¶ÄÉÆÃ ºÐ¼®ÀÇ ÁÖ¿ä ¸ñÀûÀº °í°´ÀÇ ÃëÇâÀ» ÀÌÇØÇϰí ÅëÂû·ÂÀ» Á¦°øÇÏ´Â °ÍÀ̸ç, ÀÌ´Â °í°´À» À§ÇÑ AI ±â¹Ý 꺿À» µµÀÔÇÏ°í ¼ÒºñÀÚÀÇ ¿ä±¸ »çÇ×À» ¸é¹ÐÈ÷ ºÐ¼®ÇÔÀ¸·Î½á ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ½ºÅ¸¹÷½º(Starbucks Corporation)´Â ¿¹Ãø ºÐ¼®À» ÅëÇØ °í°´ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ºÐ¼®ÇÏ¿© °í°´¿¡°Ô °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ ¸Þ½ÃÁö¸¦ Á¦°øÇÕ´Ï´Ù.

5G Àü¼Û ¸ðµ¨Àº »ç¿ëÀÚÀÇ ÀÎÅÍ³Ý »ç¿ë °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ À¯¸ÁÇÑ ½ÃÀå ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ »ç¶÷µéÀº ÀÎÅͳݿ¡¼­ ´õ ¸¹Àº ½Ã°£À» º¸³»°í, ÄÁÅÙÃ÷¸¦ ¼ÒºñÇϰí, ÀÚ½ÅÀÇ Çʿ信 ¸Â´Â ÀÛ¾÷À» ¼öÇàÇÏ´Â µ¥ ´õ ¸¹Àº ½Ã°£À» ÇÒ¾ÖÇÒ ¼ö ÀÖ½À´Ï´Ù. 5G ÀÎÅͳÝÀº ¶ÇÇÑ ¸ð¹ÙÀÏ ÀüÀÚ»ó°Å·¡ ÆÇ¸Å¸¦ °¡¼ÓÈ­Çϰí, ¸¶ÄÉÆÃ ´ã´çÀÚ°¡ °í°´ °æÇèÀ» °³¼±Çϰí, ƯÈ÷ ¼Ò¸Å ¹× ¼ÒºñÀç »ê¾÷À» À§ÇØ °í°´ °æÇèÀ» °³¼±Çϰí, ¼îÇÎ ¾ÛÀ» °£¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¼îÇÎ ¾ÛÀ» °£¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô ÇØÁÙ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¸¶ÄÉÆÃ ºÐ¼® ÀÚµ¿È­´Â ºê·£µå¿Í ±â¾÷ÀÌ ¸¶ÄÉÆÃ Ä·ÆäÀÎÀÇ ¼º°øÀ» ÃøÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¸¶ÄÉÆÃ ºÐ¼® ÀÚµ¿È­¶ó´Â »õ·Î¿î Æ®·»µå°¡ ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¸®µå ½ºÄھ, º¸´Ù È¿À²ÀûÀÎ ¿¹Ãø ºÐ¼®, ¸¶ÀϽºÅæ ºÐ¼®°ú °°Àº ÁÖ¿ä ÀλçÀÌÆ®¸¦ Á¦°øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â Ancestry¿Í Dropbox, Inc. ¿¹¸¦ µé¾î, Àü·«ÀûÀ¸·Î °èȹµÈ À£ÄÄ ¸ÞÀÏÀ» ÀÛ¼ºÇϰųª ½ÅÁßÇÏ°Ô ¼±º°µÈ ¸®¿öµå ÇÁ·Î±×·¥À» ¸¸µå´Â °Í µîÀÌ ÀÖ½À´Ï´Ù. ±âº»ÀûÀ¸·Î ¸¶ÄÉÆÃ ºÐ¼® ¾÷¹«¸¦ ÀÚµ¿È­ÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀç °í°´ ¸®µå¿¡ Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ°í, À̸¦ ÅëÇØ ºñÁî´Ï½º °üÇàÀ» Áö¼ÓÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù.

BFSI »ê¾÷Àº ¿¹Ãø ±â°£ µ¿¾È Å« ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ¸ç, BFSI »ê¾÷¿¡¼­ ¸¶ÄÉÆÃ ¿¹»êÀº ÀϹÝÀûÀ¸·Î Àü³âµµ ¼öÀÍ¿¡ µû¶ó °áÁ¤µË´Ï´Ù. ºòµ¥ÀÌÅÍ ºÐ¼®À» ÅëÇÑ ¸¶ÄÉÆÃ ¹Í½º ¸ðµ¨(MMM)°ú µðÁöÅÐ ¾îÆ®¸®ºä¼Ç(Digital Attribution)ÀÇ È°¿ëÀº ÀºÇà ¹× ±ÝÀ¶±â°üÀÌ ¸¶ÄÉÆÃ Ä·ÆäÀÎÀÌ ÅõÀÚ ¼öÀÍ·ü¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¤·®È­ÇÏ¿© ÃÖÀûÀÇ ¸¶ÄÉÆÃ ¿¹»êÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾¾Æ¼ÀºÇàÀ» ºñ·ÔÇÑ ¸î¸î ´ëÇü ±ÝÀ¶±â°üµéÀº ºòµ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ÇÁ·ÎÆÄÀϸµ°ú °í°´ ¼¼ºÐÈ­¸¦ ÅëÇØ ¸¶ÄÉÆÃ ÆÀÀÌ ÀûÀýÇÑ Å¸°Ù¿¡ ÀûÇÕÇÑ Ã¤³ÎÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

  • ¿ëµµº°·Î´Â ¼Ò¼È ¹Ìµð¾î ¸¶ÄÉÆÃ ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È Å« ÆøÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÐ¾ßÀÇ À¯¸ÁÇÑ ¼ºÀå Àü¸ÁÀº ¼Ò¼È ¹Ìµð¾îÀÇ º¸±Þ·ü Áõ°¡¿Í ÀÌ¿¡ µû¸¥ ±â¾÷ÀÇ ¸¶ÄÉÆÃ Ã¤³Î·Î ¼Ò¼È ¹Ìµð¾î Ç÷§Æû Ȱ¿ëÀÇ Çʿ伺¿¡ ±âÀÎÇÕ´Ï´Ù.
  • ±¸Ãà Çüź°·Î´Â ¿ÂÇÁ·¹¹Ì½º°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅͼ¾ÅͰ¡ µ¥ÀÌÅÍÀÇ ¾ÈÀü°ú º¸¾ÈÀ» º¸ÀåÇÏ°í º¸´Ù È¿À²ÀûÀÎ µ¥ÀÌÅÍ ºÐ¼®ÀÌ °¡´ÉÇϱ⠶§¹®ÀÔ´Ï´Ù.
  • Á¶Á÷ ±Ô¸ðº°·Î´Â Áß¼Ò±â¾÷ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ºñ¿ë È¿À²ÀûÀΠŬ¶ó¿ìµå ±â¹Ý ºÐ¼® ¼ÒÇÁÆ®¿þ¾î¸¦ »ç¿ëÇÒ ¼ö ÀÖ¾î Áß¼Ò±â¾÷ÀÌ Àú·ÅÇÑ ºñ¿ëÀ¸·Î ¸¶ÄÉÆÃ ºÐ¼® ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù.
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI) »ê¾÷º° ºÎ¹®Àº ÀºÇà ¾÷¹«ÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­¿Í µðÁöÅÐ Àü¿ë ÀºÇàÀÇ ÃâÇöÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¾ÆÅÂÁö¿ªÀº Áß±¹, ½Ì°¡Æ÷¸£ µîÀÇ ±¹°¡¿¡¼­ AIÀÇ ¹ßÀü Ãß¼¼°¡ µÎµå·¯Áö¸é¼­ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

  • ½ÃÀå °èÅë Àü¸Á
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ºÐ¼®
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • ½ÃÀå ±âȸ ºÐ¼®
  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ºÐ¼® Åø
    • ¾÷°è ºÐ¼® - PorterÀÇ Five Forces ºÐ¼®
    • PESTEL ºÐ¼®

Á¦4Àå ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ¿ëµµ ÃßÁ¤¡¤µ¿Ç⠺м®

  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : µ¿Çâ°ú ½ÃÀå Á¡À¯À² ºÐ¼®, 2022³â ¹× 2030³â
  • ¼Ò¼È¹Ìµð¾î ¸¶ÄÉÆÃ
    • ¼Ò¼È¹Ìµð¾î ¸¶ÄÉÆÃ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ¸ÞÀÏ ¸¶ÄÉÆÃ
    • ¸ÞÀÏ ¸¶ÄÉÆÃ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • °Ë»ö ¿£Áø ¸¶ÄÉÆÃ
    • °Ë»ö ¿£Áø ¸¶ÄÉÆÃ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ÄÁÅÙÃ÷ ¸¶ÄÉÆÃ
    • ÄÁÅÙÃ÷ ¸¶ÄÉÆÃ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ±âŸ
    • ±âŸ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â

Á¦5Àå ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Àü°³ ÃßÁ¤¡¤µ¿Ç⠺м®

  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : µ¿Çâ°ú ½ÃÀå Á¡À¯À² ºÐ¼®, 2022³â ¹× 2030³â
  • ¿ÂÇÁ·¹¹Ì½º
    • ¿ÂÇÁ·¹¹Ì½º ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • Ŭ¶ó¿ìµå
    • Ŭ¶ó¿ìµå ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â

Á¦6Àå ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Á¶Á÷ ±Ô¸ð ÃßÁ¤¡¤µ¿Ç⠺м®

  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : µ¿Çâ°ú ½ÃÀå Á¡À¯À² ºÐ¼®, 2022³â ¹× 2030³â
  • ´ë±â¾÷
    • ´ë±â¾÷ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • Áß¼Ò±â¾÷
    • Áß¼Ò±â¾÷ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â

Á¦7Àå ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ¾÷°è ÃßÁ¤¡¤µ¿Ç⠺м®

  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : µ¿Çâ°ú ½ÃÀå Á¡À¯À² ºÐ¼®, 2022³â ¹× 2030³â
  • ¼Ò¸Å
    • ¼Ò¸Å ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ¼ÒºñÀç
    • ¼ÒºñÀç ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • »ê¾÷
    • »ê¾÷ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
    • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI) ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ¹Ìµð¾î¡¤Ä¿¹Â´ÏÄÉÀ̼Ç
    • ºÎµ¿»ê ¹× °Ç¼³ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ÇコÄɾî
    • ÇコÄÉ¾î ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
  • ±âŸ
    • ±âŸ ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â

Á¦8Àå ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : Áö¿ª ÃßÁ¤¡¤µ¿Ç⠺м®

  • Áö¿ªº° Àü¸Á
  • Áö¿ªº° ¸¶ÄÉÆÃ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • ºÏ¹Ì
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017³â-2030³â
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • Çѱ¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦9Àå °æÀï ±¸µµ

  • ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷ÀÇ ÃÖ±Ù µ¿Çâ°ú ¿µÇ⠺м®
  • ½ÃÀå ÁøÃâ±â¾÷ ºÐ·ù
    • IBM Corporation
    • Adobe Inc.
    • Google, LLC
    • Accenture
    • Oracle
    • SAS Institute Inc.
    • TABLEAU SOFTWARE, LLC
    • Teradata
    • Funnel.io
LSH 24.01.23

Marketing Analytics Software Market Growth & Trends:

The global marketing analytics software market size is expected to reach USD 12.51 billion by 2030, registering a CAGR of 16.7% during the forecast period, according to a new report by Grand View Research, Inc. The integration of advanced technologies such as Artificial Intelligence (AI) and Machine Learning (ML) offers promising growth prospects for the market. AI is expected to help marketers deliver the right brand message across different marketing channels and improve search results, which lead to desired landing pages and websites. The primary objective of marketing analytics is to understand and offer insights regarding customer preferences, which can be achieved by deploying AI-enabled chatbots for customers and carefully analyzing consumer demands. For instance, Starbucks Corporation uses predictive analytics to gather and analyze customer data and offer personalized marketing messages to customers.

The 5G delivery model offers promising market growth opportunities owing to its ability to enhance users' internet-using experience. This will lead people to spend more quality time on the internet and consume content or perform tasks specific to their needs. The consumption of specific content and buying trends can be monitored to develop efficient marketing strategies and effective profit-generation models. 5G internet is also expected to accelerate mobile e-commerce sales, enabling marketers to improve customer experiences and streamline shopping apps, particularly for the retail and consumer goods industry.

The automation of marketing analytics helps brands and corporations to gauge the success of marketing campaigns. The emerging trend to automate marketing analytics is offering an impetus to market growth. It offers critical insights into lead scoring, more efficient predictive analytics, and milestone analysis as well as helps save operational expenditure. Companies such as Ancestry and Dropbox, Inc. have witnessed the benefits of marketing analytics automation, such as creating strategically outlined welcome mails and carefully curated win-back programs, which ensure higher revenue-generation opportunities. Essentially, automating marketing analytics practices enables companies to gain access to prospect leads, which can be pursued to ensure prolonged business practices.

The BFSI industry is expected to register a significant growth rate over the forecast period. In the BFSI industry, the marketing budget is usually based on the revenue generated in the previous fiscal year. The use of Marketing Mix Models (MMM) and digital attribution powered by big data analytics aids banking and financial institutions in quantifying the impact of marketing campaigns on return on investment and determining the optimum marketing budget. Furthermore, several large financial institutions including Citibank use big data analytics for profiling and customer segmentation, thus enabling marketing teams to identify the right channel for the right targets.

Marketing Analytics Software Market Report Highlights:

  • By application, the social media marketing segment is expected to witness considerable growth over the forecast period. The promising growth prospects of the segment can be attributed to the rising penetration of social media and the subsequent need for corporations to tap social media platforms as a marketing channel
  • Based on deployment, the on-premise segment is expected to register the highest growth rate over the forecast period owing to the ability to ensure better safety and security of data from an on-premise data center and more efficient data analysis
  • In terms of organization size, the SMEs segment is expected to register the highest growth rate over the forecast period owing to the availability of cost-effective cloud-based analytics software, which helps SMEs offer marketing analytics services at affordable costs
  • The BFSI industry vertical segment is expected to register the highest growth rate over the forecast period owing to the rapid digitization of banking practices and the emergence of digital-only banks
  • Asia Pacific is expected to register the highest CAGR over the forecast period owing to the presence of significant AI development trends in countries, such as China and Singapore

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation & Scope
    • 1.1.1. Application
    • 1.1.2. Deployment
    • 1.1.3. Organization size
    • 1.1.4. Industry vertical
    • 1.1.5. Regional scope
    • 1.1.6. Estimates and forecast timeline
  • 1.2. Research Methodology
  • 1.3. Information Procurement
    • 1.3.1. Purchased database
    • 1.3.2. GVR's internal database
    • 1.3.3. Secondary sources
    • 1.3.4. Primary research
    • 1.3.5. Details of primary research
  • 1.4. Information or Data Analysis
  • 1.5. Market Formulation & Validation
  • 1.6. Model Details
  • 1.7. List of Secondary Sources
  • 1.8. List of Primary Sources
  • 1.9. Objectives

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
    • 2.2.1. Application outlook
    • 2.2.2. Deployment outlook
    • 2.2.3. Organization size outlook
    • 2.2.4. Industry vertical outlook
    • 2.2.5. Regional outlook
  • 2.3. Competitive Insights

Chapter 3. Marketing Analytics Software Market Variables, Trends & Scope

  • 3.1. Market Lineage Outlook
  • 3.2. Industry Value Chain Analysis
  • 3.3. Market Dynamics
    • 3.3.1. Market driver analysis
    • 3.3.2. Market restraint analysis
    • 3.3.3. Market opportunity analysis
  • 3.4. Marketing Analytics Software Market Analysis Tools
    • 3.4.1. Industry analysis - Porter's
      • 3.4.1.1. Supplier power
      • 3.4.1.2. Buyer power
      • 3.4.1.3. Substitution threat
      • 3.4.1.4. Threat of new entrant
      • 3.4.1.5. Competitive rivalry
    • 3.4.2. PESTEL analysis
      • 3.4.2.1. Political landscape
      • 3.4.2.2. Technological landscape
      • 3.4.2.3. Economic landscape

Chapter 4. Marketing Analytics Software Market : Application Estimates & Trend Analysis

  • 4.1. Marketing Analytics Software Market: Key Takeaways
  • 4.2. Marketing Analytics Software Market: Movement & Market Share Analysis, 2022 & 2030
  • 4.3. Social Media Marketing
    • 4.3.1. Social media marketing market estimates and forecasts, 2017 to 2030 (USD Million)
  • 4.4. E-Mail Marketing
    • 4.4.1. E-mail marketing market estimates and forecasts, 2017 to 2030 (USD Million)
  • 4.5. Search Engine Marketing
    • 4.5.1. Search engine marketing market estimates and forecasts, 2017 to 2030 (USD Million)
  • 4.6. Content Marketing
    • 4.6.1. Content marketing market estimates and forecasts, 2017 to 2030 (USD Million)
  • 4.7. Others
    • 4.7.1. Others market estimates and forecasts, 2017 to 2030 (USD Million)

Chapter 5. Marketing Analytics Software Market : Deployment Estimates & Trend Analysis

  • 5.1. Marketing Analytics Software Market: Key Takeaways
  • 5.2. Marketing Analytics Software Market: Movement & Market Share Analysis, 2022 & 2030
  • 5.3. On-Premise
    • 5.3.1. On-premise market estimates and forecasts, 2017 to 2030 (USD Million)
  • 5.4. Cloud
    • 5.4.1. Cloud market estimates and forecasts, 2017 to 2030 (USD Million)

Chapter 6. Marketing Analytics Software Market : Organization Size Estimates & Trend Analysis

  • 6.1. Marketing Analytics Software Market: Key Takeaways
  • 6.2. Marketing Analytics Software Market: Movement & Market Share Analysis, 2022 & 2030
  • 6.3. Large Enterprises
    • 6.3.1. Large enterprises market estimates and forecasts, 2017 to 2030 (USD Million)
  • 6.4. Small & Medium Enterprises
    • 6.4.1. Small & medium enterprises market estimates and forecasts, 2017 to 2030 (USD Million)

Chapter 7. Marketing Analytics Software Market : Industry Vertical Estimates & Trend Analysis

  • 7.1. Marketing Analytics Software Market: Key Takeaways
  • 7.2. Marketing Analytics Software Market: Movement & Market Share Analysis, 2022 & 2030
  • 7.3. Retail
    • 7.3.1. Retail market estimates and forecasts, 2017 to 2030 (USD Million)
  • 7.4. Consumer Goods
    • 7.4.1. Consumer goods market estimates and forecasts, 2017 to 2030 (USD Million)
  • 7.5. Industrial
    • 7.5.1. Industrial market estimates and forecasts, 2017 to 2030 (USD Million)
  • 7.6. BFSI
    • 7.6.1. BFSI market estimates and forecasts, 2017 to 2030 (USD Million)
  • 7.7. Media & Communication
    • 7.7.1. Real estate & construction market estimates and forecasts, 2017 to 2030 (USD Million)
  • 7.8. Healthcare
    • 7.8.1. Healthcare market estimates and forecasts, 2017 to 2030 (USD Million)
  • 7.9. Others
    • 7.9.1. Others market estimates and forecasts, 2017 to 2030 (USD Million)

Chapter 8. Marketing Analytics Software Market: Regional Estimates & Trend Analysis

  • 8.1. Regional Outlook
  • 8.2. Marketing Analytics Software Market by Region: Key Takeaway
  • 8.3. North America
    • 8.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.3.2. U.S.
      • 8.3.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.3.3. Canada
      • 8.3.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
  • 8.4. Europe
    • 8.4.1. UK
      • 8.4.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.4.2. Germany
      • 8.4.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.4.3. France
      • 8.4.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
  • 8.5. Asia Pacific
    • 8.5.1. Japan
      • 8.5.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.5.2. China
      • 8.5.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.5.3. India
      • 8.5.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.5.4. Australia
      • 8.5.4.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.5.5. South Korea
      • 8.5.5.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
  • 8.6. Latin America
    • 8.6.1. Brazil
      • 8.6.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.6.2. Mexico
      • 8.6.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
  • 8.7. MEA
    • 8.7.1. Saudi Arabia
      • 8.7.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.7.2. South Africa
      • 8.7.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
    • 8.7.3. United Arab Emirates (UAE)
      • 8.7.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)

Chapter 9. Competitive Landscape

  • 9.1. Recent Developments & Impact Analysis, By Key Market Participants
  • 9.2. Market Participant Categorization
    • 9.2.1. IBM Corporation
      • 9.2.1.1. Company overview
      • 9.2.1.2. Financial performance
      • 9.2.1.3. Product benchmarking
      • 9.2.1.4. Strategic initiatives
    • 9.2.2. Adobe Inc.
      • 9.2.2.1. Company overview
      • 9.2.2.2. Financial performance
      • 9.2.2.3. Product benchmarking
      • 9.2.2.4. Strategic initiatives
    • 9.2.3. Google, LLC
      • 9.2.3.1. Company overview
      • 9.2.3.2. Financial performance
      • 9.2.3.3. Product benchmarking
      • 9.2.3.4. Strategic initiatives
    • 9.2.4. Accenture
      • 9.2.4.1. Company overview
      • 9.2.4.2. Financial performance
      • 9.2.4.3. Product benchmarking
      • 9.2.4.4. Strategic initiatives
    • 9.2.5. Oracle
      • 9.2.5.1. Company overview
      • 9.2.5.2. Financial performance
      • 9.2.5.3. Product benchmarking
      • 9.2.5.4. Strategic initiatives
    • 9.2.6. SAS Institute Inc.
      • 9.2.6.1. Company overview
      • 9.2.6.2. Financial performance
      • 9.2.6.3. Product benchmarking
      • 9.2.6.4. Strategic initiatives
    • 9.2.7. TABLEAU SOFTWARE, LLC
      • 9.2.7.1. Company overview
      • 9.2.7.2. Financial performance
      • 9.2.7.3. Product benchmarking
      • 9.2.7.4. Strategic initiatives
    • 9.2.8. Teradata
      • 9.2.8.1. Company overview
      • 9.2.8.2. Financial performance
      • 9.2.8.3. Product benchmarking
      • 9.2.8.4. Strategic initiatives
    • 9.2.9. Funnel.io
      • 9.2.9.1. Company overview
      • 9.2.9.2. Financial performance
      • 9.2.9.3. Product benchmarking
      • 9.2.9.4. Strategic initiatives
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦