½ÃÀ庸°í¼­
»óǰÄÚµå
1405846

In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® ¸®Æ÷Æ® : ±â¼úº°, ÇÁ·Îºê À¯Çüº°, Á¦Ç° À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2024-2030³â)

In Situ Hybridization Market Size, Share & Trends Analysis Report By Technology, By Probe Type, By Product, By Application, By End-use, By Region, And Segment Forecasts, 2024 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ :

Grand View Research, Inc.ÀÇ ÃֽЏ®Æ÷Æ®¿¡ µû¸£¸é ¼¼°èÀÇ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ Áß CAGR 7.2%¸¦ ±â·ÏÇϸç, 2030³â±îÁö 25¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÇöÀå ÇÏÀ̺긮µåÈ­(In Situ hybridization, ISH)´Â Áø´Ü ¿¬±¸ ¹× ÀÓ»ó ÀÀ¿ë¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ISH´Â ƯÁ¤ ÇÙ»êÀÇ ºÐÆ÷¿Í Ç¥Àû À¯ÀüÀÚ ´Ü¹éÁú Á¦Ç°°úÀÇ °ü°è¸¦ °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ ¿¬±¸ÀÚµé »çÀÌ¿¡¼­ ÀαâÀÖ´Â Á¢±Ù¹ýÀÔ´Ï´Ù. µû¶ó¼­ ISHÀÇ ÀÀ¿ë ¹üÀ§°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ´õ ¸¹Àº ¿¬±¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

ISH ±â¼ú°ú ±× »ç¿ë¹ý¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¬±¸ÀÚµéÀº ´Ù¾çÇÑ ¿ëµµ·Î ISH ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î MultiplexDXÀÇ CEO´Â Elsevier¿ÍÀÇ ÀÎÅͺ信¼­ FISH ±â¼úÀÌ Ãʱ⠾๰ °³¹ß ¹× °³ÀÎ ¸ÂÃãÇü Ä¡·á¸¦ À§ÇÑ È¹±âÀûÀÎ Á¤º¸¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Ù°í ¸»Çß½À´Ï´Ù. ¼±Áø±¹¿¡¼­´Â ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó °³Àκ° ¸ÂÃã Ä¡·á¸¦ ¼±ÅÃÇÏ´Â »ç¶÷µéÀÌ ´Ã¾î³ª°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ½ÅÈï °æÁ¦±¹¿¡¼­´Â º¸Çè ȯ±ÞÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ÀÌ Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù º¸Çè Àû¿ë ¹üÀ§°¡ È®´ëµÇ¸é¼­ ´ë´Ù¼öÀÇ ±¹¹ÎµéÀÌ Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖ°Ô µÇ¸é¼­ ¼ö¿ä´Â °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹¿¡¼­´Â Medicare°¡ °¡Àå Å« ½ÃÀå ±â¾÷À̸ç, ¼ÒµæÀ̳ª º´·Â¿¡ °ü°è¾øÀÌ 65¼¼ ÀÌ»óÀÇ ³ëÀε鿡°Ô Ä¡·á¸¦ Á¦°øÇÕ´Ï´Ù.

COVID-19ÀÇ À¯ÇàÀ¸·Î ´Ù¾çÇÑ ¿¬±¸ÀÚµéÀÌ COVID-19 °¨¿° ¼¼Æ÷¿¡ ISH ±â¼úÀ» äÅÃÇϸ鼭 ¼ö¿ä Ãø¸éÀº ISH ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, 2020³â 7¿ù¿¡ ¹ßÇ¥µÈ ¿¬±¸¿¡ µû¸£¸é COVID-19 °¨¿° ȯÀÚÀÇ ºÎ°Ë Æó 8°Ç, ½ÅÀå »ý°Ë 10°Ç, ÅÂ¹Ý 1°Ç¿¡¼­ ISH ºÐ¼®°ú RNA ÇÁ·Îºê¸¦ ÅëÇØ °ËÅäÇß½À´Ï´Ù.

ISH´Â 8°³ÀÇ Æó¿Í ÅÂ¹Ý ¸ðµÎ¿¡¼­ COVID-19 ¾ç¼º °á°ú¸¦ º¸¿´À¸³ª, ½ÅÀå »ùÇÿ¡¼­´Â ¾ç¼º °á°ú¸¦ º¸ÀÌÁö ¾Ê¾Ò½À´Ï´Ù. ÀÌ ºÐ¼®Àº Á¶Á÷ »ùÇÿ¡¼­ ¹ÙÀÌ·¯½º¸¦ °ËÃâÇÏ´Â °í°¨µµ ¹× ƯÀÌÀûÀÎ ±â¼úÀ» º¸¿©ÁÝ´Ï´Ù. ¸¶Âù°¡Áö·Î Advanced Cell Diagnostics, Inc.´Â COVID-19 ¿¬±¸¸¦ Áö¿øÇϱâ À§ÇØ RNAscope ±â¼úÀ» µµÀÔÇß½À´Ï´Ù.

°¢ ±â¾÷ÀÇ Àü·«Àû ±¸»óÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ISH ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¾÷Àº Æ÷Æ®Æú¸®¿À¸¦ °­È­Çϱâ À§ÇØ ½ÅÁ¦Ç°À» ½ÃÀå¿¡ Ãâ½ÃÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î F. Hoffmann-La Roche´Â 2021³â 3¿ù¿¡ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ¹× ¸é¿ªÁ¶Á÷È­ÇÐÀÇ ´ÙÁßÈ­ ±â´ÉÀ» È®ÀåÇÏ´Â DISCOVERY Green HRP ¹ß»ö °ËÃâ ŰƮ¸¦ Ãâ½ÃÇß½À´Ï´Ù.

ÇÑÆí, ºÐÀÚÁø´ÜÇÐÀº Á¤È®Çϰí È¿°úÀûÀÎ °á°ú¸¦ Á¦°øÇϹǷΠÁø´Ü ºÐ¾ß¿¡¼­ ÇʼöÀûÀÎ ¿ëµµÀÔ´Ï´Ù. ±×·¯³ª FISH ºÐ¼®ÀÇ ³ôÀº Á¦Á¶ ºñ¿ë°ú FISH À̹Ì¡¿¡ »ç¿ëµÇ´Â Àü¹® Á¶¸³ °øÀå ¹× Àåºñ Á¤ºñ¿¡ ÇÊ¿äÇÑ ³ôÀº ÀÚº»À¸·Î ÀÎÇØ ¸ÅÃâ âÃâÀÌ Á¦ÇÑÀûÀÏ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.

In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

  • ±â¼úº°·Î´Â CISH ºÐ¾ß°¡ ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ ¼ºÀå·ü·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, CISH¿¡ »ç¿ëµÇ´Â ½Ã¾àÀÌ ´õ ¾ÈÁ¤ÀûÀ̱⠶§¹®¿¡ »ùÇÃÀ» ´õ ¿À·¡ º¸°üÇÒ ¼ö ÀÖ°í ¿©·¯ ¹ø °Ë»çÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ÇÁ·Îºêº°·Î´Â DNA ºÐ¾ß°¡ ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯ÀüÀÚ ÀÌ»ó, ¾Ï µî ¿°»öü ÀÌ»ó°ú °ü·ÃµÈ Áúº´ÀÇ ¹ß»ý·üÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù.
  • Á¦Ç°º°·Î´Â ¼­ºñ½º ºÐ¾ß°¡ 2024-2030³â °¡Àå ºü¸¥ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ǰÁú Ç¥ÁØÀ» º¸ÀåÇÏ°í ¾÷¹« ±â´ÉÀ» °³¼±Çϱâ À§ÇÑ ¾Æ¿ô¼Ò½Ì Áõ°¡°¡ À¯¸®ÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå º¯¼ö, µ¿Çâ ¹× ¹üÀ§

  • ½ÃÀå ¼¼ºÐÈ­¿Í ¹üÀ§
  • ½ÃÀå °èÅë Àü¸Á
    • ¸ð½ÃÀå Àü¸Á
    • °ü·Ã/ºÎ¼ö ½ÃÀå Àü¸Á
  • ½ÃÀå µ¿Çâ°ú Àü¸Á
  • ½ÃÀå ¿ªÇÐ
    • ´ë»ó ÁúȯÀÇ À¯º´·ü »ó½Â
    • ü¿ÜÁø´Ü ºÐ¾ß¿¡¼­ ±â¼úÀÇ Áøº¸
    • ü¿ÜÁø´Ü¿¡¼­ ¿¬±¸°³¹ß ÅõÀÚÀÇ Áõ°¡
  • ½ÃÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • ISHÀÇ °íºñ¿ë
    • ¾Ö¸ÅÇÑ ±ÔÁ¦ ±¸Á¶ÀÇ Á¸Àç
  • 2023³âÀÇ º¸±Þ°ú ¼ºÀå Àü¸Á ¸ÅÇÎ
  • »ç¾÷ ȯ°æ ºÐ¼®
    • SWOT ºÐ¼®£»¿äÀκ°(Á¤Ä¡¡¤¹ý·ü, °æÁ¦¡¤±â¼ú)
    • Porter's Five Forces ºÐ¼®

Á¦4Àå Å×Å©³î·¯Áö ºñÁî´Ï½º ºÐ¼®

  • In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå : Á¦Ç° À¯ÇüÀÇ º¯µ¿ ºÐ¼®
  • FISH
    • FISH ½ÃÀå, 2018-2030³â
  • CISH
    • CISH ½ÃÀå, 2018-2030³â

Á¦5Àå ÇÁ·Îºê ºñÁî´Ï½º ºÐ¼®

  • In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå : »çÀÌÆ® º¯µ¿ ºÐ¼®
  • DNA
    • DNA ½ÃÀå, 2018-2030³â
  • RNA
    • RNA ½ÃÀå, 2018-2030³â

Á¦6Àå Á¦Ç° ºñÁî´Ï½º ºÐ¼®

  • In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå : »çÀÌÆ® º¯µ¿ ºÐ¼®
  • ±â±â
    • ±â±â ½ÃÀå, 2018-2030³â
  • ¼Ò¸ðǰ°ú ºÎ¼Óǰ
    • ¼Ò¸ðǰ°ú ºÎ¼Óǰ ½ÃÀå, 2018-2030³â
  • ¼ÒÇÁÆ®¿þ¾î
    • ¼ÒÇÁÆ®¿þ¾î ½ÃÀå, 2018-2030³â
  • ¼­ºñ½º
    • ¼­ºñ½º ½ÃÀå, 2018-2030³â

Á¦7Àå ¾ÖÇø®ÄÉÀÌ¼Ç ºñÁî´Ï½º ºÐ¼®

  • In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå : Á¦Ç° À¯ÇüÀÇ º¯µ¿ ºÐ¼®
  • ¾Ï
    • ¾Ï ½ÃÀå, 2018-2030³â
  • ¼¼Æ÷À¯ÀüÇÐ
    • ¼¼Æ÷À¯ÀüÇÐ ½ÃÀå, 2018-2030³â
  • ¹ß»ý»ý¹°ÇÐ
    • ¹ß»ý»ý¹°ÇÐ ½ÃÀå, 2018-2030³â
  • °¨¿°Áõ
    • °¨¿°Áõ ½ÃÀå, 2018-2030³â
  • ±âŸ
    • ±âŸ ½ÃÀå, 2018-2030³â

Á¦8Àå ÃÖÁ¾ ¿ëµµ ºñÁî´Ï½º ºÐ¼®

  • In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå : ÃÖÁ¾ ¿ëµµÀÇ º¯µ¿ ºÐ¼®
  • º´¿ø°ú Áø´Ü ¿¬±¸¼Ò
    • º´¿ø°ú Áø´Ü ¿¬±¸¼Ò ½ÃÀå, 2018-2030³â
  • CRO
    • CRO ½ÃÀå, 2018-2030³â
  • Çмú¡¤¿¬±¸±â°ü
    • Çмú¡¤¿¬±¸±â°ü ½ÃÀå, 2018-2030³â
  • ±âŸ
    • ±âŸ ½ÃÀå, 2018-2030³â

Á¦9Àå Áö¿ª ºñÁî´Ï½º ºÐ¼®

  • Áö¿ªº° In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå Á¡À¯À², 2023³â¡¤2030³â
  • ºÏ¹Ì
    • SWOT ºÐ¼®
    • ºÏ¹ÌÀÇ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå, 2018-2030³â
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • SWOT ºÐ¼®
    • À¯·´ÀÇ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå, 2018-2030³â
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • µ§¸¶Å©
    • ½º¿þµ§
    • ³ë¸£¿þÀÌ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • SWOT ºÐ¼®
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå, 2018-2030³â
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • ű¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • SWOT ºÐ¼®
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå, 2018-2030³â
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • SWOT ºÐ¼®
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ In Situ ÇÏÀ̺긮´ÙÀÌÁ¦ÀÌ¼Ç ½ÃÀå, 2018-2030³â
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • Äí¿þÀÌÆ®

Á¦10Àå °æÀï ±¸µµ

  • ±â¾÷ ºÐ·ù
  • Àü·« ¸ÅÇÎ
    • ½ÅÁ¦Ç° ¹ß¸Å
    • ÆÄÆ®³Ê½Ê
    • Ãëµæ
    • Çù¾÷
    • ÀÚ±ÝÁ¶´Þ
  • ÁÖ¿ä ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • ±â¾÷ È÷Æ®¸Ê ºÐ¼®
  • ±â¾÷ °³¿ä
    • PerkinElmer, Inc.
    • Thermo Fisher Scientific, Inc.
    • BioView
    • Agilent Technologies, Inc.
    • Merck KGaA
    • Bio-Rad Laboratories, Inc.
    • OXFORD GENE TECHNOLOGY IP LIMITED
    • LEICA BIOSYSTEMS NUSSLOCH GMBH(DANAHER CORPORATION)
    • NEOGENOMICS LABORATORIES, INC.
    • ADVANCED CELL DIAGNOSTICS, INC.
KSA 24.01.25

In Situ Hybridization Market Growth & Trends:

The global in situ hybridization market size is expected to reach USD 2.55 billion by 2030, registering a CAGR of 7.2% during the forecast period, according to a new report by Grand View Research, Inc. Situ Hybridization (ISH) is extensively utilized for research and clinical applications of diagnostics. ISH is a popular approach among researchers as it aids in determining the relationship between the distribution of specific nucleic acids and the target gene protein products. Hence, expanding the scope of ISH in applications is accelerating and leading to further research.

The increasing awareness about ISH techniques and their usage encourages researchers to employ the techniques for various applications. For instance, the CEO of MultiplexDX stated in an interview with Elsevier that FISH technology can contribute breakthrough information for early drug development and personalized treatment. A growing number of people in developed countries are opting for personalized treatment owing to an increase in awareness, thus boosting market demand.

Furthermore, reimbursement schemes being made available in developed economies have led to an increase in demand for this diagnosis. The demand continues to increase as the majority of the public can now afford it due to the recent expansion through insurance coverage. For instance, Medicare is the largest market player in the U.S., which provides care for those aged 65 years and above, irrespective of their income and medical history.

Owing to the COVID-19 pandemic, the demand side showcased a positive impact on the ISH market as various researchers employed the technique on COVID-19-infected cells. Research published in July 2020, considered 8 autopsy lungs, 10 kidney biopsies, and 1 placenta from COVID-19-infected patients with ISH assay and RNA probes.

COVID-19 positive results showed in all 8 lungs and the placenta by ISH, but not in the kidney samples. The assay showcases a sensitive and specific technique for detecting the virus from tissue samples. Similarly, Advanced Cell Diagnostics, Inc., introduced RNAscope technology to support COVID-19 research.

The growing strategic initiatives by the companies are anticipated to boost the ISH market growth. Key players are introducing novel products in the market to strengthen their portfolios. For instance, in March 2021, F. Hoffmann-La Roche launched DISCOVERY Green HRP chromogen detection kit to expand the multiplexing capability of in situ hybridization and immunohistochemistry.

On the other hand, molecular diagnostics renders accurate & effective results and has indispensable applications in the field of diagnosis. However, the high manufacturing cost of FISH assays and the high amount of capital required for specialized assembly plants & maintenance of instruments used in FISH imaging are likely to limit revenue generation.

In Situ Hybridization Market Report Highlights:

  • By technology, the CISH segment is projected to expand at the fastest growth rate during the forecast period. Since the reagents used in CISH are more stable, the sample can be stored for a longer duration and can be examined multiple times
  • By probe, the DNA segment is anticipated to have the fastest growth rate during the forecast period. Owing to the increasing incidence of diseases associated with chromosomal aberrations, such as genetic abnormalities and cancer
  • By product, the services segment is anticipated to have the fastest-growing CAGR between 2024 to 2030. Increasing outsourcing to ensure high adherence to quality standards and improve operational functionalities contributes to the lucrative growth.

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation
    • 1.1.1. Market Definitions
  • 1.2. Objectives
    • 1.2.1. Objective - 1
    • 1.2.2. Objective - 2
    • 1.2.3. Objective - 3
  • 1.3. Research Methodology
  • 1.4. Information Procurement
    • 1.4.1. Purchased Database
    • 1.4.2. GVR's Internal Database
    • 1.4.3. Secondary Sources
    • 1.4.4. Primary Research
  • 1.5. Information or Data Analysis
    • 1.5.1. Data Analysis Models
  • 1.6. Market Formulation & Validation
  • 1.7. Model Details
    • 1.7.1. Commodity Flow Analysis
  • 1.8. List of Secondary Sources
  • 1.9. List of Abbreviations
  • 1.10. List of Primary Sources

Chapter 2. Executive Summary

  • 2.1. Market Snapshot
  • 2.2. Segment Snapshot
  • 2.3. Competitive Landscape Snapshot

Chapter 3. Market Variables, Trends, & Scope

  • 3.1. Market Segmentation and Scope
  • 3.2. Market Lineage Outlook
    • 3.2.1. Parent Market Outlook
    • 3.2.2. Related/Ancillary Market Outlook
  • 3.3. Market Trends and Outlook
  • 3.4. Market Dynamics
    • 3.4.1. Rising Prevalence of Target Disorders
    • 3.4.2. Technological Advancement In the Field of In Vitro Diagnostics
    • 3.4.3. Increasing R&D Investments In In Vitro Diagnostics
  • 3.5. Market Restraint Analysis
    • 3.5.1. High Cost of ISH
    • 3.5.2. Presence of An Ambiguous Regulatory Framework
  • 3.6. Penetration and Growth Prospect Mapping 2023
  • 3.7. Business Environment Analysis
    • 3.7.1. SWOT Analysis; By Factor (Political & Legal, Economic And Technological)
    • 3.7.2. Porter's Five Forces Analysis

Chapter 4. Technology Business Analysis

  • 4.1. In Situ Hybridization Market: Product Type Movement Analysis
  • 4.2. FISH
    • 4.2.1. FISH Market, 2018 - 2030 (USD Million)
  • 4.3. CISH
    • 4.3.1. CISH Market, 2018 - 2030 (USD Million)

Chapter 5. Probe Business Analysis

  • 5.1. In Situ Hybridization Market: Site Movement Analysis
  • 5.2. DNA
    • 5.2.1. DNA Market, 2018 - 2030 (USD Million)
  • 5.3. RNA
    • 5.3.1. RNA Market, 2018 - 2030 (USD Million)

Chapter 6. Product Business Analysis

  • 6.1. In Situ Hybridization Market: Site Movement Analysis
  • 6.2. Instruments
    • 6.2.1. Instruments Market, 2018 - 2030 (USD Million)
  • 6.3. Consumables & Accessories
    • 6.3.1. Consumables & Accessories Market, 2018 - 2030 (USD Million)
  • 6.4. Software
    • 6.4.1. Software Market, 2018 - 2030 (USD Million)
  • 6.5. Services
    • 6.5.1. Services Market, 2018 - 2030 (USD Million)

Chapter 7. Application Business Analysis

  • 7.1. In Situ Hybridization Market: Product Type Movement Analysis
  • 7.2. Cancer
    • 7.2.1. Cancer Market, 2018 - 2030 (USD Million)
  • 7.3. Cytogenetics
    • 7.3.1. Cytogenetics Market, 2018 - 2030 (USD Million)
  • 7.4. Developmental Biology
    • 7.4.1. Developmental Biology Market, 2018 - 2030 (USD Million)
  • 7.5. Infectious Diseases
    • 7.5.1. Infectious Diseases Market, 2018 - 2030 (USD Million)
  • 7.6. Others
    • 7.6.1. Others Market, 2018 - 2030 (USD Million)

Chapter 8. End-use Business Analysis

  • 8.1. In Situ Hybridization Market: End-use Movement Analysis
  • 8.2. Hospitals & Diagnostic Laboratories
    • 8.2.1. Hospitals & Diagnostic Laboratories Market, 2018 - 2030 (USD Million)
  • 8.3. CROs
    • 8.3.1. CROs Market, 2018 - 2030 (USD Million)
  • 8.4. Academic & Research Institutes
    • 8.4.1. Academic & Research Institutes Market, 2018 - 2030 (USD Million)
  • 8.5. Others
    • 8.5.1. Others Market, 2018 - 2030 (USD Million)

Chapter 9. Regional Business Analysis

  • 9.1. In Situ Hybridization Market Share By Region, 2023 & 2030
  • 9.2. North America
    • 9.2.1. SWOT Analysis
    • 9.2.2. North America In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.2.3. U.S.
      • 9.2.3.1. Key Country Dynamics
      • 9.2.3.2. Target Disease Scenario
      • 9.2.3.3. Competitive Scenario
      • 9.2.3.4. Regulatory Framework
      • 9.2.3.5. Reimbursement Scenario
      • 9.2.3.6. U.S. In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.2.4. Canada
      • 9.2.4.1. Key Country Dynamics
      • 9.2.4.2. Target Disease Scenario
      • 9.2.4.3. Competitive Scenario
      • 9.2.4.4. Regulatory Framework
      • 9.2.4.5. Reimbursement Scenario
      • 9.2.4.6. Canada In Situ Hybridization Market, 2018 - 2030 (USD Million)
  • 9.3. Europe
    • 9.3.1. SWOT Analysis
    • 9.3.2. Europe In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.3. Germany
      • 9.3.3.1. Key Country Dynamics
      • 9.3.3.2. Target Disease Scenario
      • 9.3.3.3. Competitive Scenario
      • 9.3.3.4. Regulatory Framework
      • 9.3.3.5. Reimbursement Scenario
      • 9.3.3.6. Germany In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.4. UK
      • 9.3.4.1. Key Country Dynamics
      • 9.3.4.2. Target Disease Scenario
      • 9.3.4.3. Competitive Scenario
      • 9.3.4.4. Regulatory Framework
      • 9.3.4.5. Reimbursement Scenario
      • 9.3.4.6. UK In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.5. France
      • 9.3.5.1. Key Country Dynamics
      • 9.3.5.2. Target Disease Scenario
      • 9.3.5.3. Competitive Scenario
      • 9.3.5.4. Regulatory Framework
      • 9.3.5.5. Reimbursement Scenario
      • 9.3.5.6. France In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.6. Italy
      • 9.3.6.1. Key Country Dynamics
      • 9.3.6.2. Target Disease Scenario
      • 9.3.6.3. Competitive Scenario
      • 9.3.6.4. Regulatory Framework
      • 9.3.6.5. Reimbursement Scenario
      • 9.3.6.6. Italy In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.7. Spain
      • 9.3.7.1. Key Country Dynamics
      • 9.3.7.2. Target Disease Scenario
      • 9.3.7.3. Competitive Scenario
      • 9.3.7.4. Regulatory Framework
      • 9.3.7.5. Reimbursement Scenario
      • 9.3.7.6. Spain In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.8. Denmark
      • 9.3.8.1. Key Country Dynamics
      • 9.3.8.2. Target Disease Scenario
      • 9.3.8.3. Competitive Scenario
      • 9.3.8.4. Regulatory Framework
      • 9.3.8.5. Reimbursement Scenario
      • 9.3.8.6. Denmark In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.9. Sweden
      • 9.3.9.1. Key Country Dynamics
      • 9.3.9.2. Target Disease Scenario
      • 9.3.9.3. Competitive Scenario
      • 9.3.9.4. Regulatory Framework
      • 9.3.9.5. Reimbursement Scenario
      • 9.3.9.6. Sweden In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.3.10. Norway
      • 9.3.10.1. Key Country Dynamics
      • 9.3.10.2. Target Disease Scenario
      • 9.3.10.3. Competitive Scenario
      • 9.3.10.4. Regulatory Framework
      • 9.3.10.5. Reimbursement Scenario
      • 9.3.10.6. Norway In Situ Hybridization Market, 2018 - 2030 (USD Million)
  • 9.4. Asia Pacific
    • 9.4.1. SWOT Analysis
    • 9.4.2. Asia Pacific In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.4.3. Japan
      • 9.4.3.1. Key Country Dynamics
      • 9.4.3.2. Target Disease Scenario
      • 9.4.3.3. Competitive Scenario
      • 9.4.3.4. Regulatory Framework
      • 9.4.3.5. Reimbursement Scenario
      • 9.4.3.6. Japan In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.4.4. China
      • 9.4.4.1. Key Country Dynamics
      • 9.4.4.2. Target Disease Scenario
      • 9.4.4.3. Competitive Scenario
      • 9.4.4.4. Regulatory Framework
      • 9.4.4.5. Reimbursement Scenario
      • 9.4.4.6. China In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.4.5. India
      • 9.4.5.1. Key Country Dynamics
      • 9.4.5.2. Target Disease Scenario
      • 9.4.5.3. Competitive Scenario
      • 9.4.5.4. Regulatory Framework
      • 9.4.5.5. Reimbursement Scenario
      • 9.4.5.6. India In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.4.6. South Korea
      • 9.4.6.1. Key Country Dynamics
      • 9.4.6.2. Target Disease Scenario
      • 9.4.6.3. Competitive Scenario
      • 9.4.6.4. Regulatory Framework
      • 9.4.6.5. Reimbursement Scenario
      • 9.4.6.6. South Korea In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.4.7. Australia
      • 9.4.7.1. Key Country Dynamics
      • 9.4.7.2. Target Disease Scenario
      • 9.4.7.3. Competitive Scenario
      • 9.4.7.4. Regulatory Framework
      • 9.4.7.5. Reimbursement Scenario
      • 9.4.7.6. Australia In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.4.8. Thailand
      • 9.4.8.1. Key Country Dynamics
      • 9.4.8.2. Target Disease Scenario
      • 9.4.8.3. Competitive Scenario
      • 9.4.8.4. Regulatory Framework
      • 9.4.8.5. Reimbursement Scenario
      • 9.4.8.6. Thailand In Situ Hybridization Market, 2018 - 2030 (USD Million)
  • 9.5. Latin America
    • 9.5.1. SWOT Analysis
    • 9.5.2. Latin America In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.5.3. Brazil
      • 9.5.3.1. Key Country Dynamics
      • 9.5.3.2. Target Disease Scenario
      • 9.5.3.3. Competitive Scenario
      • 9.5.3.4. Regulatory Framework
      • 9.5.3.5. Reimbursement Scenario
      • 9.5.3.6. Brazil In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.5.4. Mexico
      • 9.5.4.1. Key Country Dynamics
      • 9.5.4.2. Target Disease Scenario
      • 9.5.4.3. Competitive Scenario
      • 9.5.4.4. Regulatory Framework
      • 9.5.4.5. Reimbursement Scenario
      • 9.5.4.6. Mexico In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.5.5. Argentina
      • 9.5.5.1. Key Country Dynamics
      • 9.5.5.2. Target Disease Scenario
      • 9.5.5.3. Competitive Scenario
      • 9.5.5.4. Regulatory Framework
      • 9.5.5.5. Reimbursement Scenario
      • 9.5.5.6. Argentina In Situ Hybridization Market, 2018 - 2030 (USD Million)
  • 9.6. MEA
    • 9.6.1. SWOT Analysis
    • 9.6.2. MEA In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.6.3. South Africa
      • 9.6.3.1. Key Country Dynamics
      • 9.6.3.2. Target Disease Scenario
      • 9.6.3.3. Competitive Scenario
      • 9.6.3.4. Regulatory Framework
      • 9.6.3.5. Reimbursement Scenario
      • 9.6.3.6. South Africa In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.6.4. Saudi Arabia
      • 9.6.4.1. Key Country Dynamics
      • 9.6.4.2. Target Disease Scenario
      • 9.6.4.3. Competitive Scenario
      • 9.6.4.4. Regulatory Framework
      • 9.6.4.5. Reimbursement Scenario
      • 9.6.4.6. Saudi Arabia In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.6.5. UAE
      • 9.6.5.1. Key Country Dynamics
      • 9.6.5.2. Target Disease Scenario
      • 9.6.5.3. Competitive Scenario
      • 9.6.5.4. Regulatory Framework
      • 9.6.5.5. Reimbursement Scenario
      • 9.6.5.6. UAE In Situ Hybridization Market, 2018 - 2030 (USD Million)
    • 9.6.6. Kuwait
      • 9.6.6.1. Key Country Dynamics
      • 9.6.6.2. Target Disease Scenario
      • 9.6.6.3. Competitive Scenario
      • 9.6.6.4. Regulatory Framework
      • 9.6.6.5. Reimbursement Scenario
      • 9.6.6.6. Kuwait In Situ Hybridization Market, 2018 - 2030 (USD Million)

Chapter 10. Competitive Landscape

  • 10.1. Company Categorization
  • 10.2. Strategy Mapping
    • 10.2.1. New Product Launch
    • 10.2.2. Partnerships
    • 10.2.3. Acquisition
    • 10.2.4. Collaboration
    • 10.2.5. Funding
  • 10.3. Key Company Market Share Analysis, 2023
  • 10.4. Company Heat Map Analysis
  • 10.5. Company Profiles
    • 10.5.1. . PerkinElmer, Inc.
      • 10.5.1.1. Company Overview
      • 10.5.1.2. Financial Performance
      • 10.5.1.3. Product Benchmarking
      • 10.5.1.4. Strategic Initiatives
    • 10.5.2. Thermo Fisher Scientific, Inc.
      • 10.5.2.1. Company Overview
      • 10.5.2.2. Financial Performance
      • 10.5.2.3. Product Benchmarking
      • 10.5.2.4. Strategic Initiatives
    • 10.5.3. BioView
      • 10.5.3.1. Company Overview
      • 10.5.3.2. Financial Performance
      • 10.5.3.3. Product Benchmarking
      • 10.5.3.4. Strategic Initiatives
    • 10.5.4. Agilent Technologies, Inc.
      • 10.5.4.1. Company Overview
      • 10.5.4.2. Financial Performance
      • 10.5.4.3. Product Benchmarking
      • 10.5.4.4. Strategic Initiatives
    • 10.5.5. Merck KGaA
      • 10.5.5.1. Company Overview
      • 10.5.5.2. Financial Performance
      • 10.5.5.3. Product Benchmarking
      • 10.5.5.4. Strategic Initiatives
    • 10.5.6. Bio-Rad Laboratories, Inc.
      • 10.5.6.1. Company Overview
      • 10.5.6.2. Financial Performance
      • 10.5.6.3. Product Benchmarking
      • 10.5.6.4. Strategic Initiatives
    • 10.5.7. OXFORD GENE TECHNOLOGY IP LIMITED
      • 10.5.7.1. Financial Performance
      • 10.5.7.2. Product Benchmarking
      • 10.5.7.3. Strategic Initiatives
    • 10.5.8. LEICA BIOSYSTEMS NUSSLOCH GMBH (DANAHER CORPORATION)
      • 10.5.8.1. Company Overview
      • 10.5.8.2. Financial Performance
      • 10.5.8.3. Product Benchmarking
      • 10.5.8.4. Strategic Initiatives
    • 10.5.9. NEOGENOMICS LABORATORIES, INC.
      • 10.5.9.1. Financial Performance
      • 10.5.9.2. Product Benchmarking
      • 10.5.9.3. Strategic Initiatives
    • 10.5.10. ADVANCED CELL DIAGNOSTICS, INC.
      • 10.5.10.1. Company Overview
      • 10.5.10.2. Financial Performance
      • 10.5.10.3. Product Benchmarking
      • 10.5.10.4. Strategic Initiatives
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦