½ÃÀ庸°í¼­
»óǰÄÚµå
1405920

µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® ¸®Æ÷Æ® : ¿ÀÆÛ¸µº°, µµÀÔº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµ »ê¾÷º°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2023-2030³â)

Data Discovery Market Size, Share & Trends Analysis Report By Offering (Solutions, Services), By Deployment (Cloud, On-premises), By Application, By End-use Industry, By Region, And Segment Forecasts, 2023 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 100 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ :

Grand View Research, Inc.ÀÇ ÃֽЏ®Æ÷Æ®¿¡ µû¸£¸é ¼¼°èÀÇ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 315¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2023-2030³âÀÇ CAGRÀº 15.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍÀÇ ¾ç°ú º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ±â¾÷ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϸ鼭 ÀÌ·¯ÇÑ ¼ºÀå¼¼¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÇ»ç°áÁ¤ °­È­, È¿À²¼º Çâ»ó, ºñ¿ë Àý°¨ µî µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®ÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®ÀÇ Á߿伺ÀÌ ´õ¿í ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº ÀÇ»ç°áÁ¤¿¡ ÀÖÀ¸¸ç, µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ µ¥ÀÌÅÍ ¹ß°ß°ú ÀÌÇØ¸¦ °£¼ÒÈ­ÇÏ´Â Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¼¿ÇÁ ¼­ºñ½º ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º(BI) ÅøÀº »ç¿ëÀÚ°¡ ½º½º·Î µ¥ÀÌÅ͸¦ ºÐ¼®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÔÀ¸·Î½á IT Áö¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸鼭 Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ÀÌó·³ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®°¡ ºñÁî´Ï½º¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® ÀâÀ¸¸é¼­, ÅøÀº ´õ¿í »ç¿ëÀÚ Ä£È­ÀûÀÌ°í °í±ÞÈ­µÇ¾î ´õ ¸¹Àº »ç¶÷µéÀÌ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, AI¿Í ML ±â¼úÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¤Çü ¹× ºñÁ¤Çü µ¥ÀÌÅͰ¡ ´ë·®À¸·Î »ý¼ºµÊ¿¡ µû¶ó µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼ÇÀº ±â¾÷ÀÌ µ¥ÀÌÅÍ ÀÚ»êÀÌ ¾îµð¿¡ ÀÖ´ÂÁö, ¾î¶»°Ô Ȱ¿ëÇØ¾ß ÇÏ´ÂÁö µî µ¥ÀÌÅÍ ÀÚ»êÀ» ÆÄ¾ÇÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼ÇÀº µ¥ÀÌÅÍ Á¤¸®, º¯È¯, ÅëÇÕ µîÀÇ ÀÛ¾÷À» Æ÷ÇÔÇÑ µ¥ÀÌÅÍ Áغñ¿¡ ÇʼöÀûÀ̸ç, µ¥ÀÌÅÍ ½Ã°¢È­, ¸Ó½Å·¯´×, Åë°è ºÐ¼® µîÀÇ ±â¹ýÀ» ÅëÇØ ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â µ¥ ¸Å¿ì À¯¿ëÇÕ´Ï´Ù. ÀÌó·³ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ¼Ö·ç¼ÇÀº AI¿Í MLÀ» Ȱ¿ëÇÏ´Â ±â¾÷¿¡¼­ ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú¿¡¼­ »ý¼ºµÇ´Â ±¤¹üÀ§ÇÏ°í ´Ù¾çÇÑ µ¥ÀÌÅ͸¦ °ü¸®ÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® »ê¾÷ÀÇ ¼ºÀåÀº ºòµ¥ÀÌÅÍ¿Í »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ±Þ°ÝÇÑ Áõ°¡·Î ÀÎÇØ ±â¾÷ÀÌ ¿¬°áµÈ ±â±â¿Í ¼¾¼­·ÎºÎÅÍ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ÅøÀº ±â¾÷ÀÌ ½Ã°¢È­ ¹× ´ëÈ­Çü º¸°í¼­¸¦ ÅëÇØ ÀÌ µ¥ÀÌÅ͸¦ ÇØ¼®ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµåÀÇ µµÀÔ°ú ºñ¿ë È¿À²ÀûÀÎ ºÐ¼® ¼Ö·ç¼ÇÀÇ µîÀåÀ¸·Î µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®´Â Áß¼Ò±â¾÷µµ ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ÀÚ¿¬¾î ó¸®(NLP)´Â ºñÁ¤Çü µ¥ÀÌÅÍ¿¡¼­ Áß¿äÇÑ ÀλçÀÌÆ®À» ÃßÃâÇϰí, ºñÀü¹®°¡°¡ µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®¿¡ Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï Çϸç, ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í µ¥ÀÌÅÍ Àü¹®°¡¸¦ ´õ º¹ÀâÇÑ ÀÛ¾÷¿¡ ÅõÀÔÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸®ÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¼¿ÇÁ ¼­ºñ½º ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Á¶Á÷ÀÌ µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤¿¡ ¿ì¼±¼øÀ§¸¦ µÎ¸é¼­ µ¥ÀÌÅÍ ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

  • 2022³â µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀåÀº ¼Ö·ç¼Ç ºÎ¹®ÀÌ 65% ÀÌ»óÀÇ ¸ÅÃâ Á¡À¯À²·Î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î Àü¸Á. ¼Ö·ç¼Ç ½ÃÀåÀº µ¥ÀÌÅÍ °Ë»ö Åø¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ±â¾÷ÀÌ ´Ù¾çÇÑ ¼Ò½º¿¡¼­ µ¥ÀÌÅ͸¦ ¹ß°ßÇÏ°í ºÐ¼®ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â Á¾ÇÕÀûÀÎ ±â´É°ú ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù.
  • µµÀÔ¿¡ µû¶ó ¿ÂÇÁ·¹¹Ì½º ¼¼ºÐÈ­°¡ 2022³â Àü ¼¼°è ¸ÅÃâ Á¡À¯À² 54%¸¦ Â÷ÁöÇÏ¸ç ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ °Ë»ö ¼Ö·ç¼ÇÀ» ÅëÇØ ±â¾÷Àº »ç³»¿¡¼­ µ¥ÀÌÅ͸¦ °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¿ëµµº°·Î´Â º¸¾È ¹× ¸®½ºÅ© °ü¸® ºÐ¾ß°¡ 2022³â ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¶Á÷Àº ±â¹Ð µ¥ÀÌÅ͸¦ ½Äº°ÇÏ°í ¹«´Ü ¾×¼¼½º, µµ³­ ¹× ºÐ½Ç·ÎºÎÅÍ º¸È£ÇØ¾ß ÇÒ Çʿ伺À» Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇϰí ÀÖ½À´Ï´Ù.
  • ÃÖÁ¾ ¿ëµµº°·Î´Â BFSI ºÐ¾ß°¡ 2022³â °¡Àå Å« ¸ÅÃâ Á¡À¯À²·Î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, BFSI Á¶Á÷Àº °í°´ °Å·¡, À繫 ±â·Ï, ½ÃÀå µ¥ÀÌÅÍ µî ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ°í ¼öÁýÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

  • ½ÃÀå °èÅë
  • ¾÷°èÀÇ ¹ë·ùüÀÎ ºÐ¼®
  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå - ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ÃËÁø¿äÀÎ ºÐ¼®
    • ½ÃÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • ¾÷°èÀÇ °úÁ¦
  • ºñÁî´Ï½º ȯ°æ Åø ºÐ¼® : µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå
    • Porter's Five Forces ºÐ¼®
    • PESTEL ºÐ¼®
  • °æÁ¦ ¸Þ°¡Æ®·»µå ºÐ¼®

Á¦4Àå µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ¿ÀÆÛ¸µ ÃßÁ¤¡¤µ¿Ç⠺м®

  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • ¼Ö·ç¼Ç
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ¼­ºñ½º
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â

Á¦5Àå µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : µµÀÔ ÃßÁ¤¡¤µ¿Ç⠺м®

  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • Ŭ¶ó¿ìµå
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ¿ÂÇÁ·¹¹Ì½º
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â

Á¦6Àå µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ¿ëµµ ÃßÁ¤¡¤µ¿Ç⠺м®

  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • º¸¾È°ú ¸®½ºÅ© °ü¸®
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ÀÚ»ê¿î¿ë °ü¸®
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ÆÇ¸Å ¹× ¸¶ÄÉÆÃ °ü¸®
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • °ø±Þ¸Á °ü¸®
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ±âŸ
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â

Á¦7Àå µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ÃÖÁ¾ ¿ëµµ ÃßÁ¤¡¤µ¿Ç⠺м®

  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : ÁÖ¿ä Æ÷ÀÎÆ®
  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • IT¿Í Åë½Å
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • Á¤ºÎ
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • BFSI
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ¼Ò¸Å¿Í E-Commerce
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ¹Ìµð¾î¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ÇコÄɾî¿Í »ý¸í°úÇÐ
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ¿î¼Û°ú ¹°·ù
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
  • ±âŸ
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â

Á¦8Àå µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : Áö¿ªÀÇ ÃßÁ¤¡¤µ¿Ç⠺м®

  • µ¥ÀÌÅÍ µð½ºÄ¿¹ö¸® ½ÃÀå : Áö¿ª ½ÃÀå Á¡À¯À² ºÐ¼®, 2022³â ¹× 2030³â
  • ºÏ¹Ì
    • ½ÃÀå Ã߻ꡤ¿¹Ãø, 2018-2030³â
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ½ÃÀå ÃßÁ¤¡¤¿¹Ãø, 2017-2030³â
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ½ÃÀå ÃßÁ¤¡¤¿¹Ãø, 2017-2030³â
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ½ÃÀå ÃßÁ¤¡¤¿¹Ãø, 2017-2030³â
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå ÃßÁ¤¡¤¿¹Ãø, 2017-2030³â
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹

Á¦9Àå °æÀï ±¸µµ

  • ±â¾÷ ºÐ·ù
  • ±â¾÷ÀÇ ½ÃÀå Æ÷Áö¼Å´×
  • ±â¾÷ È÷Æ®¸Ê ºÐ¼®
  • Àü·« ¸ÅÇÎ
    • È®´ë
    • ÇÕº´°ú Àμö
    • ÆÄÆ®³Ê½Ê°ú Çù¾÷
    • ½ÅÁ¦Ç° ¹ß¸Å
    • ¿¬±¸°³¹ß
  • ±â¾÷ °³¿ä¡¤¸®½ºÆÃ
    • IBM Corporation
    • Microsoft
    • Oracle
    • Salesforce, Inc.
    • SAS Institute, Inc.
    • Google
    • Amazon Web Service, Inc.
    • Open Text
    • Micro Strategy
    • Cloudera, Inc.
KSA 24.01.26

Data Discovery Market Growth & Trends:

The global data discovery market size is expected to reach USD 31.55 billion by 2030 and is anticipated to grow at a CAGR of 15.3% from 2023 to 2030, according to a new report by Grand View Research, Inc. This growth is fueled by the expanding data volume and complexity, leading to increased adoption of cloud-based data discovery solutions by businesses. The growing awareness of data discovery's advantages, such as enhanced decision-making, increased efficiency, and cost savings, emphasizes its importance for organizations. Businesses are increasingly reliant on data for decision-making, driving the demand for tools that simplify data discovery and comprehension.

Self-service Business Intelligence (BI) tools are gaining popularity as they empower users to analyze data independently, reducing dependence on IT support. Thus, data discovery is becoming essential for businesses, with tools becoming more user-friendly and advanced, making them accessible to a broader audience. The increased adoption of AI and ML technology is generating extensive volumes of structured and unstructured data, driving the demand for data discovery solutions.

These solutions aid businesses in comprehending their data assets, encompassing data location and optimal usage. They are essential for data preparation, involving tasks such as cleaning, transformation, and integration, and are invaluable for extracting insights through methods like data visualization, machine learning, and statistical analysis. Thus, data discovery solutions are crucial for companies leveraging AI and ML as they manage the extensive and varied data produced by these advanced technologies.

The growth of the data discovery industry is driven by the surge in big data and the Internet of Things (IoT), as organizations gather vast data from connected devices and sensors. Data discovery tools help businesses interpret this data through visualizations and interactive reports. In addition, increased cloud adoption and cost-effective analytics solutions are making data discovery more accessible to smaller enterprises. Further, Natural Language Processing (NLP) is driving the growth of data discovery by enabling the extraction of key insights from unstructured data, making data discovery accessible to non-technical users, and automating tasks to free up data professionals for more complex work. As the demand for self-service analytics grows, and organizations prioritize data-driven decision-making, the market for data is expected to continue expanding in the future.

Data Discovery Market Report Highlights:

  • In terms of offering, the solutions segment led the market in 2022 with a revenue share of over 65%. The market for solutions is growing rapidly due to the increasing demand for data discovery tools, and these solutions offer a comprehensive set of features and capabilities that help businesses discover and analyze data from a variety of sources
  • Based on deployment, the on-premises segment led the market in 2022 with a 54% global revenue share. On-premises data discovery solutions allow organizations to maintain their data in-house, where they have more control over it
  • Based on application, security, and risk management segment led the market in 2022. Organizations are increasingly recognizing the need to identify and protect their sensitive data from unauthorized access, theft, and loss
  • In terms of end-use, BFSI segment led the market in 2022 with the largest revenue share. BFSI organizations are generating and collecting vast amounts of data from a variety of sources, including customer transactions, financial records, and market data

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Scope and Assumptions
  • 1.3. Information Procurement
    • 1.3.1. Purchased database
    • 1.3.2. GVR's internal database
    • 1.3.3. Secondary sources & third-party perspectives
    • 1.3.4. Primary research
  • 1.4. Information Analysis
    • 1.4.1. Data analysis models
  • 1.5. Market Formulation & Data Visualization
  • 1.6. Data Validation & Publishing

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
  • 2.3. Competitive Insights

Chapter 3. Drug Delivery Devices Market Variables, Trends & Scope

  • 3.1. Market Lineage
  • 3.2. Industry Value Chain Analysis
  • 3.3. Data Discovery Market - Market Dynamics
    • 3.3.1. Market driver analysis
      • 3.3.1.1. Growing need to discover sensitive structure and unstructured data
      • 3.3.1.2. Increasing investment in data privacy measures with the introduction of data privacy regulations
    • 3.3.2. Market restraint analysis
      • 3.3.2.1. Lack of skilled professional workforce
    • 3.3.3. Industry challenges
  • 3.4. Business Environmental Tools Analysis: Data Discovery Market
    • 3.4.1. Porter's five forces analysis
      • 3.4.1.1. Bargaining power of suppliers
      • 3.4.1.2. Bargaining power of buyers
      • 3.4.1.3. Treat of substitution
      • 3.4.1.4. Threat of new entrant
      • 3.4.1.5. Competitive rivalry
    • 3.4.2. PESTEL Analysis
      • 3.4.2.1. Political landscape
      • 3.4.2.2. Economic landscape
      • 3.4.2.3. Social landscape
      • 3.4.2.4. Technological landscape
      • 3.4.2.5. Environmental landscape
      • 3.4.2.6. Legal landscape
  • 3.5. Economic Mega Trend Analysis

Chapter 4. Data Discovery Market: Offering Estimates & Trend Analysis

  • 4.1. Data Discovery Market, By Offering: Key Takeaways
  • 4.2. Data Discovery Market: Offering Movement Analysis, 2022 & 2030
  • 4.3. Solutions
    • 4.3.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 4.4. Services
    • 4.4.1. Market estimates and forecasts, 2017 - 2030 (USD Million)

Chapter 5. Data Discovery Market: Deployment Estimates & Trend Analysis

  • 5.1. Data Discovery Market, By Deployment: Key Takeaways
  • 5.2. Data Discovery Market: Deployment Movement Analysis, 2022 & 2030
  • 5.3. Cloud
    • 5.3.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 5.4. On-premises
    • 5.4.1. Market estimates and forecasts, 2017 - 2030 (USD Million)

Chapter 6. Data Discovery Market: Deployment Estimates & Trend Analysis

  • 6.1. Data Discovery Market, By Deployment: Key Takeaways
  • 6.2. Data Discovery Market: Deployment Movement Analysis, 2022 & 2030
  • 6.3. Security & Risk Management
    • 6.3.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 6.4. Asset Management
    • 6.4.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 6.5. Sales & Marketing Management
    • 6.5.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 6.6. Supply Chain Management
    • 6.6.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 6.7. Others
    • 6.7.1. Market estimates and forecasts, 2017 - 2030 (USD Million)

Chapter 7. Data Discovery Market: End-use Estimates & Trend Analysis

  • 7.1. Data Discovery Market, By End-use: Key Takeaways
  • 7.2. Data Discovery Market: End-use Movement Analysis, 2022 & 2030
  • 7.3. IT & Telecommunication
    • 7.3.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.4. Government
    • 7.4.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.5. BFSI
    • 7.5.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.6. Retail & E-commerce
    • 7.6.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.7. Media & Entertainment
    • 7.7.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.8. Healthcare & Life Sciences
    • 7.8.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.9. Transport & Logistics
    • 7.9.1. Market estimates and forecasts, 2017 - 2030 (USD Million)
  • 7.10. Others
    • 7.10.1. Market estimates and forecasts, 2017 - 2030 (USD Million)

Chapter 8. Data Discovery Market: Regional Estimates & Trend Analysis

  • 8.1. Data Discovery Market: Regional Market Share Analysis, 2022 & 2030
  • 8.2. North America
    • 8.2.1. Market estimates and forecast, 2018 - 2030 (Revenue, USD Million)
    • 8.2.2. U.S.
      • 8.2.2.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.2.3. Canada
      • 8.2.3.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
  • 8.3. Europe
    • 8.3.1. Market Estimates & Forecast, 2017 - 2030 (USD Million)
    • 8.3.2. Germany
      • 8.3.2.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.3.3. France
      • 8.3.3.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.3.4. UK
      • 8.3.4.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
  • 8.4. Asia Pacific
    • 8.4.1. Market Estimates & Forecast, 2017 - 2030 (USD Million)
    • 8.4.2. China
      • 8.4.2.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.4.3. Japan
      • 8.4.3.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.4.4. India
      • 8.4.4.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.4.5. South Korea
      • 8.4.5.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.4.6. Australia
      • 8.4.6.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
  • 8.5. Latin America
    • 8.5.1. Market Estimates & Forecast, 2017 - 2030 (USD Million)
    • 8.5.2. Brazil
      • 8.5.2.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.5.3. Mexico
      • 8.5.3.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
  • 8.6. Middle East & Africa
    • 8.6.1. Market Estimates & Forecast, 2017 - 2030 (USD Million)
    • 8.6.2. KSA
      • 8.6.2.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.6.3. UAE
      • 8.6.3.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)
    • 8.6.4. South Africa
      • 8.6.4.1. Market estimates and forecasts, 2017 - 2030 (Revenue, USD Million)

Chapter 9. Competitive Landscape

  • 9.1. Company Categorization
  • 9.2. Company Market Positioning
  • 9.3. Company Heat Map Analysis
  • 9.4. Strategy Mapping
    • 9.4.1. Expansion
    • 9.4.2. Mergers & Acquisition
    • 9.4.3. Partnerships & Collaborations
    • 9.4.4. New product launches
    • 9.4.5. Research & Development
  • 9.5. Company Profiles/Listings
    • 9.5.1. IBM Corporation
      • 9.5.1.1. Overview
      • 9.5.1.2. Financial performance
      • 9.5.1.3. Product benchmarking
    • 9.5.2. Microsoft
      • 9.5.2.1. Overview
      • 9.5.2.2. Financial performance
      • 9.5.2.3. Product benchmarking
    • 9.5.3. Oracle
      • 9.5.3.1. Overview
      • 9.5.3.2. Financial performance
      • 9.5.3.3. Product benchmarking
    • 9.5.4. Salesforce, Inc.
      • 9.5.4.1. Overview
      • 9.5.4.2. Financial performance
      • 9.5.4.3. Product benchmarking
    • 9.5.5. SAS Institute, Inc.
      • 9.5.5.1. Overview
      • 9.5.5.2. Financial performance
      • 9.5.5.3. Product benchmarking
    • 9.5.6. Google
      • 9.5.6.1. Overview
      • 9.5.6.2. Financial performance
      • 9.5.6.3. Product benchmarking
    • 9.5.7. Amazon Web Service, Inc.
      • 9.5.7.1. Overview
      • 9.5.7.2. Financial performance
      • 9.5.7.3. Product benchmarking
    • 9.5.8. Open Text
      • 9.5.8.1. Overview
      • 9.5.8.2. Financial performance
      • 9.5.8.3. Product benchmarking
    • 9.5.9. Micro Strategy
      • 9.5.9.1. Overview
      • 9.5.9.2. Financial performance
      • 9.5.9.3. Product benchmarking
    • 9.5.10. Cloudera, Inc.
      • 9.5.10.1. Overview
      • 9.5.10.2. Financial performance
      • 9.5.10.3. Product benchmarking
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦