½ÃÀ庸°í¼­
»óǰÄÚµå
1493443

µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® ¸®Æ÷Æ® : À¯Çüº°, µµÀÔº°, ¾÷°èº°, Áö¿ªº°, ºÎ¹® ¿¹Ãø(2024-2030³â)

Data Lake Market Size, Share & Trends Analysis Report By Type (Solution, Services), By Deployment (On-Premises, Cloud), By Vertical, By Region, And Segment Forecasts, 2024 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 150 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå ¼ºÀå°ú µ¿Çâ :

Grand View Research, Inc.ÀÇ ÃֽЏ®Æ÷Æ®¿¡ µû¸£¸é ¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 598¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, 2024-2030³âÀÇ CAGRÀº 23.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ·¹ÀÌÅ© ÇϿ콺 ¾ÆÅ°ÅØÃ³ÀÇ ºÎ»óÀº ¼¼°è ½ÃÀå¿¡¼­ Áß¿äÇÑ Æ®·»µåÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¾ÆÅ°ÅØÃ³´Â µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ À¯¿¬¼º°ú ºñ¿ë È¿À²¼º°ú µ¥ÀÌÅÍ¿þ¾îÇϿ콺ÀÇ ±¸Á¶È­µÈ °Å¹ö³Í½º ¹× ¼º´ÉÀ» °áÇÕÇÏ¿© µ¥ÀÌÅÍ ÀúÀå, ó¸® ¹× ºÐ¼®À» À§ÇÑ ÅëÇÕ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ© ÇϿ콺´Â µÎ °¡Áö ÀåÁ¡À» ¸ðµÎ Á¦°øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϸç, Á¶Á÷Àº ÀüÅëÀûÀÎ µ¥ÀÌÅÍ °ü¸® Á¢±Ù ¹æ½ÄÀÇ ÀåÁ¡À» Ȱ¿ëÇϸ鼭 Çö´ëÀÇ µ¥ÀÌÅÍ Á᫐ ±â¾÷ÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ©¿Í µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ±â¼úÀÇ °áÇÕÀº µ¥ÀÌÅÍ °ü¸® »óȲÀ» ´Ü¼øÈ­ÇÏ°í º¹À⼺À» ÁÙ¿© Á¶Á÷ÀÌ µ¥ÀÌÅÍ ÀÚ»êÀÇ °¡Ä¡¸¦ ±Ø´ëÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

»ç¹°ÀÎÅͳÝ(IoT)°ú ¿§Áö ÄÄÇ»ÆÃÀÌ °è¼Ó È®»êµÊ¿¡ µû¶ó µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼ÇÀº ÀÌ·¯ÇÑ ºÐ»êµÈ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇϰí ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ© Ç÷§ÆûÀº ¿§Áö¿¡¼­ »ý¼ºµÈ µ¥ÀÌÅ͸¦ ¼öÁý, ó¸®, ºÐ¼®ÇÒ ¼ö ÀÖ´Â ±â´ÉÀ» °³¹ßÇÏ¿© µ¥ÀÌÅÍ »ý¼º ½ÃÁ¡¿¡ °¡±î¿î ½Ç½Ã°£ ÀλçÀÌÆ®¿Í ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Á¶Á÷ÀÌ IoT µ¥ÀÌÅÍÀÇ °¡Ä¡¸¦ Ȱ¿ëÇϰí, ƯÈ÷ ½Ã°£Àû Á¦¾àÀÌ Àְųª ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ½Ã³ª¸®¿À¿¡¼­ ´õ ¸¹Àº Á¤º¸¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ©¸¦ ¿§Áö±îÁö È®ÀåÇÔÀ¸·Î½á ±â¾÷Àº IoT ÅõÀÚÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈ­Çϰí, ¿î¿µ È¿À²¼ºÀ» ÃÖÀûÈ­Çϸç, µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» °­È­ÇØ Çõ½ÅÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼ÇÀº ¿ÂÇÁ·¹¹Ì½º ºÐ¼® ¹× ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º(BI) Åø°ú ÅëÇÕµÇ¾î º¸´Ù ÅëÇÕÀûÀ̰í Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ °ü¸® »ýŰ踦 Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ ±â¾÷Àº º°µµÀÇ BI Ç÷§Æû ¾øÀ̵µ ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ ·¹ÀÌÅ© ȯ°æ ³»¿¡¼­ °í±Þ ºÐ¼®À» ½ÇÇàÇϰí, ´ëÈ­Çü ½Ã°¢È­¸¦ »ý¼ºÇϰí, ÀλçÀÌÆ®¸¦ Á÷Á¢ µµÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â µ¥ÀÌÅÍ ·¹ÀÌÅ©¿Í ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ ÇÊ¿ä·Î ÇÏ´Â ºñÁî´Ï½º »ç¿ëÀÚ °£ÀÇ °£±ØÀ» Á¼È÷´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ ±â´ÉÀ» ¿ÂÇÁ·¹¹Ì½º ºÐ¼® ¹× BI¿Í ¿øÈ°ÇÏ°Ô ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ Àڻ꿡¼­ ÃÖ´ëÇÑÀÇ °¡Ä¡¸¦ âÃâÇϰí, µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô µË´Ï´Ù.

µ¥ÀÌÅÍ·¹ÀÌÅ© ½ÃÀå º¸°í¼­ÀÇ ÁÖ¿ä ³»¿ë

  • À¯Çüº°·Î´Â ¼Ö·ç¼Ç ºÎ¹®ÀÌ 2023³â 56.15%ÀÇ ÃÖ´ë ¸ÅÃâ Á¡À¯À²·Î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í±Þ ºÐ¼® ¹× µ¥ÀÌÅÍ ½Ã°¢È­¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¼Ö·ç¼ÇÀº µ¥ÀÌÅÍ ·¹ÀÌÅ© º¥´õÀÇ ÁÖ¿ä ÆÇ¸Å Æ÷ÀÎÆ®°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀ» ÅëÇØ ±â¾÷Àº µ¥ÀÌÅÍ¿¡¼­ ´õ ±íÀº ÀλçÀÌÆ®À» ¾ò°í µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù.
  • ¹èÆ÷º°·Î´Â ¿ÂÇÁ·¹¹Ì½º ¼¼ºÐÈ­°¡ 2023³â 45.62%ÀÇ °¡Àå Å« ¸ÅÃâ Á¡À¯À²·Î ½ÃÀåÀ» ÁÖµµÇß½À´Ï´Ù. µ¥ÀÌÅÍ º¸¾ÈÀº ƯÈ÷ ±ÝÀ¶ ¹× ÇコÄɾî¿Í °°Àº ±ÔÁ¦ »ê¾÷¿¡¼­ ¿©ÀüÈ÷ ±â¾÷ÀÇ °¡Àå Å« °ü½É»çÀÔ´Ï´Ù. ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ ·¹ÀÌÅ©´Â µ¥ÀÌÅÍ º¸¾È°ú ÄÄÇöóÀ̾𽺸¦ º¸´Ù ¼¼¹ÐÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÌ·¯ÇÑ ºÐ¾ß¿¡¼­ ¼±È£µÇ°í ÀÖ½À´Ï´Ù.
  • »ê¾÷º°·Î´Â ¼Ò¸Å¾÷ÀÌ 2023³â ¸ÅÃâ Á¡À¯À² 18.65%·Î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼Ò¸Å¾÷üµéÀº µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼ÇÀ» ÅëÇØ ¸ÅÀå, ¿Â¶óÀÎ, ¸ð¹ÙÀÏ, ¼Ò¼È¹Ìµð¾î µî ´Ù¾çÇÑ Á¢Á¡ÀÇ °í°´ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ¿© ¼ÒºñÀÚ ÇൿÀ» Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÏ°í °³ÀÎÈ­µÈ °æÇèÀ» Á¦°øÇϱâ À§ÇØ µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.
  • 2023³â ºÏ¹Ì°¡ 36.32%ÀÇ ¸ÅÃâ Á¡À¯À²·Î ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì¿¡¼­´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ±â¾÷Àº µ¥ÀÌÅÍ ·¹ÀÌÅ© ±¸Ãà½Ã µ¥ÀÌÅÍ º¸¾È°ú ÄÄÇöóÀ̾𽺸¦ Áß¿äÇÏ°Ô ¿©±â°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼Ç ÇÁ·Î¹ÙÀÌ´õµéÀº Á¶Á÷ÀÌ ÀÌ·¯ÇÑ ¿ä±¸»çÇ×À» ÃæÁ·ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ±â´É°ú Ư¡À» Á¦°øÇÕ´Ï´Ù.
  • ¼­¹ö¸®½º µ¥ÀÌÅÍ ·¹ÀÌÅ© ¾ÆÅ°ÅØÃ³°¡ Àα⸦ ²ø°í ÀÖÀ¸¸ç, ±â¾÷Àº ±â¹Ý ÀÎÇÁ¶ó °ü¸®¿¡ ´ëÇÑ ºÎ´ã ¾øÀÌ µ¥ÀÌÅÍ ¹× ºÐ¼® ¿ä±¸¿¡ ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ºñ¿ë È¿À²¼ºÀ» °³¼±ÇÏ°í º¯È­ÇÏ´Â µ¥ÀÌÅÍ ¹× ó¸® ¿ä±¸»çÇ׿¡ ´ëÇÑ ¹Îø¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

  • ½ÃÀå °èÅë Àü¸Á
  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ÃËÁø¿äÀÎ ºÐ¼®
    • ½ÃÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • ¾÷°èÀÇ °úÁ¦
  • µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå ºÐ¼® Åø
    • ¾÷°è ºÐ¼® - PorterÀÇ »ê¾÷ ºÐ¼®
    • PESTEL ºÐ¼®

Á¦4Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : À¯Çüº° ÃßÁ¤¡¤µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : À¯Çüº° º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦5Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : µµÀÔº° ÃßÁ¤¡¤µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : µµÀÔº° º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

Á¦6Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ¿ëµµº° ÃßÁ¤¡¤µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ¿ëµµº° º¯µ¿ ºÐ¼®, 2022³â ¹× 2030³â
  • IT
  • BFSI
  • ¼Ò¸Å
  • ÇコÄɾî
  • ¹Ìµð¾î¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • Á¦Á¶¾÷
  • ±âŸ

Á¦7Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : Áö¿ªº° ÃßÁ¤¡¤µ¿Ç⠺м®

  • µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ ½ÃÀå Á¡À¯À² : Áö¿ªº°, 2022³â ¹× 2030³â
  • ºÏ¹Ì
    • ºÏ¹ÌÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • À¯·´ÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå Ã߻ꡤ¿¹Ãø, 2017-2030³â
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹

Á¦8Àå °æÀï ±¸µµ

  • ±â¾÷ ºÐ·ù
  • ±â¾÷ÀÇ ½ÃÀå Æ÷Áö¼Å´×
  • Âü¿© ±â¾÷ÀÇ °³¿ä
  • À繫 ½ÇÀû
  • Á¦Ç° º¥Ä¡¸¶Å·
  • ±â¾÷ È÷Æ®¸Ê ºÐ¼®
  • Àü·« ¸ÅÇÎ
  • ±â¾÷ °³¿ä/»óÀå±â¾÷
    • Amazon Web Services, Inc
    • Cloudera, Inc.
    • Dremio Corporation
    • Informatica Corporation
    • Microsoft Corporation
    • Oracle Corporation
    • SAS Institute Inc.
    • Snowflake Inc.
    • Teradata Corporation
    • Zaloni, Inc.
KSA 24.06.21

Data Lake Market Growth & Trends:

The global data lake market size is anticipated to reach USD 59.89 billion by 2030 and is projected to grow at a CAGR of 23.8% from 2024 to 2030, according to a new report by Grand View Research, Inc. The rise of data lake house architectures is a significant trend in the global market. These architectures combine the flexibility and cost-effectiveness of data lakes with the structured governance and performance of data warehouses, offering a unified platform for data storage, processing, and analysis. Data lake houses aim to provide the best of both worlds, allowing organizations to leverage the strengths of traditional data management approaches while addressing the evolving needs of modern data-driven enterprises. This convergence of data lake and data warehouse technologies simplifies the data management landscape, reduces complexity, and enables organizations to extract maximum value from their data assets.

As the Internet of Things (IoT) and edge computing continue to gain traction, data lake solutions are evolving to integrate and process data from these distributed sources seamlessly. Data lake platforms are developing capabilities to ingest, process, and analyze data generated at the edge, enabling real-time insights and decision-making closer to the point of data generation. This trend helps organizations harness the value of IoT data and make more informed decisions, especially in time-sensitive or mission-critical scenarios. By extending the data lake's reach to the edge, organizations can unlock the full potential of their IoT investments, optimize operational efficiency, and drive innovation through enhanced data-driven decision-making.

On-premises data lake solutions are converging with on-premises analytics and business intelligence (BI) tools, providing a more integrated and comprehensive data management ecosystem. This integration allows organizations to perform advanced analytics, generate interactive visualizations, and derive insights directly within the on-premises data lake environment, without the need for separate BI platforms. This trend helps bridge the gap between the data lake and the business users who require actionable insights. By seamlessly integrating data lake capabilities with on-premises analytics and BI, organizations can empower their teams to derive maximum value from their on-premises data assets and make more informed, data-driven decisions.

Data Lake Market Report Highlights:

  • Based on type, the solution segment led the market with the largest revenue share of 56.15% in 2023. Solutions that enable advanced analytics and data visualization are becoming a major selling point for data lake vendors. These tools empower businesses to gain deeper insights from their data and make data-driven decisions
  • Based on deployment, the on-premises segment led the market with the largest revenue share of 45.62% in 2023. Data security remains a top concern for enterprises, especially in regulated industries like finance and healthcare. On-premises data lakes offer greater control over data security and compliance, making them a preferred choice for these sectors
  • Based on vertical, the retail segment led the market with the largest revenue share of 18.65% in 2023. Retail organizations are adopting data lake solutions to integrate customer data from various touchpoints, including in-store, online, mobile, and social media, enabling a comprehensive understanding of consumer behavior and delivering personalized experiences
  • North America dominated the market with the revenue share of 36.32% in 2023. With the growing awareness of data privacy regulations in the North America region, organizations are placing a greater emphasis on data security and compliance in their data lake deployments. Data lake solutions providers are offering features and functionalities that help organizations to meet these requirements
  • Serverless data lake architectures are gaining traction, enabling organizations to focus on their data and analytics needs without the burden of managing underlying infrastructure. This approach can lead to improved cost efficiency and enhanced agility in responding to changing data and processing requirements

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation and Scope
  • 1.2. Research Methodology
    • 1.2.1. Information Procurement
  • 1.3. Information or Data Analysis
  • 1.4. Methodology
  • 1.5. Research Scope and Assumptions
  • 1.6. Market Formulation & Validation
  • 1.7. Country Based Segment Share Calculation
  • 1.8. List of Data Sources

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
  • 2.3. Competitive Insights

Chapter 3. Data Lake market Variables, Trends, & Scope

  • 3.1. Market Lineage Outlook
  • 3.2. Market Dynamics
    • 3.2.1. Market Driver Analysis
    • 3.2.2. Market Restraint Analysis
    • 3.2.3. Industry Challenge
  • 3.3. Data Lake market Analysis Tools
    • 3.3.1. Industry Analysis - Porter's
      • 3.3.1.1. Bargaining power of the suppliers
      • 3.3.1.2. Bargaining power of the buyers
      • 3.3.1.3. Threats of substitution
      • 3.3.1.4. Threats from new entrants
      • 3.3.1.5. Competitive rivalry
    • 3.3.2. PESTEL Analysis
      • 3.3.2.1. Political landscape
      • 3.3.2.2. Economic and Social landscape
      • 3.3.2.3. Technological landscape

Chapter 4. Data Lake market: Type Estimates & Trend Analysis

  • 4.1. Segment Dashboard
  • 4.2. Data Lake market: Type Movement Analysis, USD Million, 2022 & 2030
  • 4.3. Solution
    • 4.3.1. Solution Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.4. Services
    • 4.4.1. Services Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 5. Data Lake market: Deployment Estimates & Trend Analysis

  • 5.1. Segment Dashboard
  • 5.2. Data Lake market: Deployment Movement Analysis, USD Million, 2022 & 2030
  • 5.3. On-Premises
    • 5.3.1. On-Premises Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.4. Cloud
    • 5.4.1. Cloud Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 6. Data Lake market: Application Estimates & Trend Analysis

  • 6.1. Segment Dashboard
  • 6.2. Data Lake market: Application Movement Analysis, USD Million, 2022 & 2030
  • 6.3. IT
    • 6.3.1. IT Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.4. BFSI
    • 6.4.1. BFSI Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.5. Retail
    • 6.5.1. Retail Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.6. Healthcare
    • 6.6.1. Healthcare Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.7. Media and Entertainment
    • 6.7.1. Media and Entertainment Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.8. Manufacturing
    • 6.8.1. Manufacturing Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.9. Other
    • 6.9.1. Other Data Lake market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 7. Data Lake market: Regional Estimates & Trend Analysis

  • 7.1. Data Lake market Share, By Region, 2022 & 2030, USD Million
  • 7.2. North America
    • 7.2.1. North America Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.2.2. U.S.
      • 7.2.2.1. U.S. Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.2.3. Canada
      • 7.2.3.1. Canada Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.3. Europe
    • 7.3.1. Europe Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.3.2. UK
      • 7.3.2.1. UK Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.3.3. Germany
      • 7.3.3.1. Germany Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.3.4. France
      • 7.3.4.1. France Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.4. Asia Pacific
    • 7.4.1. Asia Pacific Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.2. China
      • 7.4.2.1. China Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.3. Japan
      • 7.4.3.1. Japan Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.4. India
      • 7.4.4.1. India Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.5. South Korea
      • 7.4.5.1. South Korea Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.6. Australia
      • 7.4.6.1. Australia Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.5. Latin America
    • 7.5.1. Latin America Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.5.2. Brazil
      • 7.5.2.1. Brazil Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.5.3. Mexico
      • 7.5.3.1. Mexico Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.6. Middle East and Africa
    • 7.6.1. Middle East and Africa Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.6.2. UAE
      • 7.6.2.1. UAE Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.6.3. KSA
      • 7.6.3.1. KSA Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.6.4. South Africa
      • 7.6.4.1. South Africa Data Lake market Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 8. Competitive Landscape

  • 8.1. Company Categorization
  • 8.2. Company Market Positioning
  • 8.3. Participant's Overview
  • 8.4. Financial Performance
  • 8.5. Product Benchmarking
  • 8.6. Company Heat Map Analysis
  • 8.7. Strategy Mapping
  • 8.8. Company Profiles/Listing
    • 8.8.1. Amazon Web Services, Inc
    • 8.8.2. Cloudera, Inc.
    • 8.8.3. Dremio Corporation
    • 8.8.4. Informatica Corporation
    • 8.8.5. Microsoft Corporation
    • 8.8.6. Oracle Corporation
    • 8.8.7. SAS Institute Inc.
    • 8.8.8. Snowflake Inc.
    • 8.8.9. Teradata Corporation
    • 8.8.10. Zaloni, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦