½ÃÀ庸°í¼­
»óǰÄÚµå
1512083

AI À̹ÌÁö »ý¼º±â ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : ±¸¼º¿ä¼Òº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2024-2030³â)

AI Image Generator Market Size, Share & Trends Analysis Report By Component (Software, Services), By End-user (Media & Entertainment, Healthcare), By Region, And Segment Forecasts, 2024 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 100 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

AI À̹ÌÁö »ý¼º±â ½ÃÀå ¼ºÀå°ú µ¿Çâ

Grand View Research, Inc.ÀÇ ÃֽŠº¸°í¼­¿¡ µû¸£¸é, ¼¼°è AI À̹ÌÁö »ý¼º±â ½ÃÀå ±Ô¸ð´Â 2024³âºÎÅÍ 2030³â±îÁö 17.7%ÀÇ CAGRÀ» ±â·ÏÇÏ¿© 2030³â¿¡´Â 10¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½Ã°¢Àû ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, AI ±â¼úÀÇ ¹ßÀü, »ç¿ë »ç·ÊÀÇ È®´ë, AR ¹× VR°úÀÇ ÅëÇÕ, Á¡ÁøÀû ¼ºÀå GAN ¹× ½ºÅ¸ÀÏ ±â¹Ý GAN µî º¸´Ù °íǰÁúÀÇ »ç½ÇÀûÀÎ À̹ÌÁö »ý¼ºÀ» À§ÇÑ Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß ³ë·ÂÀº AI À̹ÌÁö »ý¼º±â ½ÃÀåÀ» ¼ºÀåÀÇ ¹ßÆÇÀ¸·Î »ï°í ÀÖ½À´Ï´Ù.

µö·¯´× ¾Ë°í¸®Áò, ƯÈ÷ »ý¼ºÀû Àû´ëÀû ³×Æ®¿öÅ©(GAN)´Â AI À̹ÌÁö »ý¼º ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×À¸¸ç, GANÀº µÎ °³ÀÇ ½Å°æ¸ÁÀ» ¼­·Î ´ë°á½ÃÄÑ ¸Å¿ì »ç½ÇÀûÀÌ°í °íǰÁúÀÇ À̹ÌÁö¸¦ »ý¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. µö·¯´× ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó AI°¡ »ý¼ºÇÏ´Â À̹ÌÁöÀÇ Ç°Áú°ú »ç½Ç°¨ÀÌ Çâ»óµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2019³â 8¿ù NVIDIA CorporationÀº GAN ±â¹Ý À̹ÌÁö »ý¼ºÀÇ È¹±âÀûÀÎ ¹ßÀüÀ¸·Î StyleGANÀ» ¹ßÇ¥Çߴµ¥, StyleGANÀº À̹ÌÁöÀÇ ½ºÅ¸Àϰú ÄÁÅÙÃ÷ÀÇ ´Ù¾çÇÑ Ãø¸éÀ» Á¦¾îÇÏ¿© ¸Å¿ì »ç½ÇÀûÀÌ°í ´Ù¾çÇÑ À̹ÌÁö¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. StyleGANÀº ¿¹¼ú, ÆÐ¼Ç, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¾ó±¼ Ư¡, ¿Ê ½ºÅ¸ÀÏ, ¿¹¼úÀû ½ºÅ¸Àϰú °°Àº ¼Ó¼ºÀ» Á¶ÀÛÇÏ¿© µ¶Æ¯ÇÏ°í ½Ã°¢ÀûÀ¸·Î ¸Å·ÂÀûÀÎ À̹ÌÁö¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù.

AI À̹ÌÁö »ý¼º±â´Â AR ¹× VR ±â¼ú°ú ÅëÇÕµÇ¾î ¸ôÀÔ°¨ ÀÖ°í »ç½ÇÀûÀÎ °æÇèÀ» ¸¸µé¾î³À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ °¡»ó ȯ°æ¿¡¼­ °íǰÁú ºñÁÖ¾óÀ» ½Ç½Ã°£À¸·Î »ý¼ºÇÒ ¼ö ÀÖ¾î AI À̹ÌÁö »ý¼º±â ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI À̹ÌÁö »ý¼º±â´Â »ç½ÇÀûÀÎ °¡»ó ¾Æ¹ÙŸ¸¦ »ý¼ºÇϰųª µðÅ×ÀÏÇÑ ÅØ½ºÃ³¿Í ¿Ü°üÀ» °¡Áø °¡»ó °´Ã¼¸¦ »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. °ÔÀÓ, ÈÆ·Ã ½Ã¹Ä·¹À̼Ç, °¡»ó Åõ¾î µî »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ AR ¹× VR ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä´Â AI À̹ÌÁö »ý¼º±âÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, VR ±â¹Ý ºñÇà ½Ã¹Ä·¹ÀÌÅÍ´Â Á¶Á¾»ç ÈÆ·Ã¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã¹Ä·¹À̼ÇÀº ½ÇÁ¦¿Í °°Àº Á¶Á¾¼® ȯ°æÀ» Á¦°øÇÏ¿© ÈÆ·Ã Á¶Á¾»ç°¡ ¾ÈÀüÇϰí ÅëÁ¦µÈ °¡»ó ȯ°æ¿¡¼­ ºñÇà Á¶Á¾, ºñ»ó ÀýÂ÷, °è±â Á¶ÀÛÀ» ¿¬½ÀÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

AI À̹ÌÁö »ý¼º±âÀÇ È°¿ë ¹üÀ§´Â ¿£ÅÍÅ×ÀÎ¸ÕÆ®, °ÔÀÓ µî ÀüÅëÀûÀÎ ºÐ¾ß¿¡ ±¹ÇѵÇÁö ¾Ê°í È®ÀåµÇ°í ÀÖ½À´Ï´Ù. ÆÐ¼Ç, ÀÎÅ׸®¾î µðÀÚÀÎ, ÇコÄɾî, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ AI À̹ÌÁö »ý¼º±â´Â »ç½ÇÀûÀÎ Á¦Ç° ºñÁÖ¾ó »ý¼º, µðÀÚÀÎ ÄܼÁÆ® ½Ã¹Ä·¹À̼Ç, ÀÇ·á¿ë À̹ÌÁö º¸Á¶, °¡»ó °æÇè °­È­ µî¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. »ç¿ë »ç·ÊÀÇ ´Ù¾çÈ­´Â AI À̹ÌÁö »ý¼º±â¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃŰ°í ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ÇコÄÉ¾î ºÐ¾ßÀÇ AI À̹ÌÁö »ý¼º±â´Â ÈÆ·Ã ¸ñÀûÀ̳ª ÀÇ·á ½Ã³ª¸®¿À ½Ã¹Ä·¹À̼ÇÀ» À§ÇØ »ç½ÇÀûÀÎ ÀÇ·á À̹ÌÁö¸¦ »ý¼ºÇϱâ À§ÇØ °³¹ßµÉ ¼ö ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î °ÇÃà ¹× ÀÎÅ׸®¾î µðÀÚÀÎ ºÐ¾ß¿¡¼­ AI À̹ÌÁö »ý¼º±â´Â °Ç¹°°ú ³»ºÎ °ø°£ÀÇ »ç½ÇÀûÀÎ ·»´õ¸µÀ» »ý¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÕÀ¸·Î º¸´Ù ƯÁ¤ ºÐ¾ß¿¡ ƯȭµÈ AI À̹ÌÁö »ý¼º ±â¼ú °³¹ßÀÌ ÁøÇàµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

AI À̹ÌÁö »ý¼º±â ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

  • µö·¯´× ±â¼ú, ƯÈ÷ »ý¼ºÀû Àû´ëÀû ³×Æ®¿öÅ©(Generative Adversarial Networks, GANs)´Â AI À̹ÌÁö »ý¼º ±â¼ú °³¹ß¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Á¶»ç ¹æ¹ýÀº ³×Æ®¿öÅ© ¾ÆÅ°ÅØÃ³, ÇнÀ ¹æ¹ý, ¼Õ½Ç ÇÔ¼ö¿¡¼­ °ý¸ñÇÒ ¸¸ÇÑ ÁøÀüÀ» ÀÌ·ç¸ç À̹ÌÁö ǰÁú, »ç½Ç¼º, ´Ù¾ç¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. µö·¯´×ÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó AI À̹ÌÁö »ý¼º ±â¼úÀº ´õ ¸¹Àº ¹ßÀüÀÇ ÇýÅÃÀ» ´©¸®¸ç ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • »ý¼ºÀû Àû´ëÀû ³×Æ®¿öÅ©(GAN) ¹× º¯ºÐ ÀÚµ¿ ÀÎÄÚ´õ(VAE)¿Í °°Àº »ý¼º ¸ðµ¨À» Æ÷ÇÔÇÑ AI ¾Ë°í¸®ÁòÀÇ ¹ßÀüÀº ¼ÒÇÁÆ®¿þ¾î ±¸Çö¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß´Â ±âº» ¾Ë°í¸®ÁòÀ» °³¼±ÇÏ°í ±¸ÇöÀ» ÃÖÀûÈ­ÇÔÀ¸·Î½á AI°¡ »ý¼ºÇÏ´Â À̹ÌÁöÀÇ Ç°Áú°ú ´Ù¾ç¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
  • E-Commerce ºÐ¾ß´Â 2024³âºÎÅÍ 2030³â±îÁö °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. E-Commerce Ç÷§ÆûÀº °í°´À» À¯Ä¡ÇÏ°í ÆÇ¸Å¸¦ ÃËÁøÇϱâ À§ÇØ °íǰÁú Á¦Ç° À̹ÌÁö¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, AI À̹ÌÁö »ý¼º±â´Â »ç½ÇÀûÀÎ Á¦Ç° À̹ÌÁö¸¦ »ý¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ±â¾÷ÀÌ Á¦Ç°À» ½Ã°¢ÀûÀ¸·Î ¸Å·ÂÀûÀ¸·Î ¼Ò°³ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.
  • Áß±¹, Àεµ, ÀϺ»À» Æ÷ÇÔÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÁÖ¿ä ±¹°¡µéÀº °í¼Ó ÀÎÅÍ³Ý ¿¬°á°ú ÷´Ü µ¥ÀÌÅͼ¾ÅÍ µî źźÇÑ ±â¼ú ÀÎÇÁ¶ó¸¦ º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÎÇÁ¶ó¸¦ ÅëÇØ AI À̹ÌÁö »ý¼º ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇÊ¿äÇÑ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ó¸®Çϰí ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå AI À̹ÌÁö »ý¼º±â ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

  • ½ÃÀå ¼Ò°³/°èÅë Àü¸Á
  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ºÐ¼®
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • ¾÷°è ±âȸ
    • ¾÷°è °úÁ¦
  • AI À̹ÌÁö »ý¼º±â ½ÃÀå ºÐ¼® Åø
    • Porters ºÐ¼®
    • PESTEL ºÐ¼®

Á¦4Àå AI À̹ÌÁö »ý¼º±â ½ÃÀå : ÄÄÆ÷³ÍÆ®º° ÃßÁ¤¡¤µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • AI À̹ÌÁö »ý¼º±â ½ÃÀå : ÄÄÆ÷³ÍÆ® º¯µ¿ ºÐ¼®, 2023³â ¹× 2030³â
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦5Àå AI À̹ÌÁö »ý¼º±â ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº° ÃßÁ¤¡¤µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • AI À̹ÌÁö »ý¼º±â ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ º¯µ¿ ºÐ¼®, 2023³â ¹× 2030³â
  • ¹Ìµð¾î¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ÇコÄɾî
  • ÆÐ¼Ç
  • ¼Ò¼È ¹Ìµð¾î
  • E-Commerce
  • ±âŸ

Á¦6Àå AI À̹ÌÁö »ý¼º±â ½ÃÀå : Áö¿ªº° ÃßÁ¤¡¤µ¿Ç⠺м®

  • AI À̹ÌÁö »ý¼º±â ½ÃÀå Á¡À¯À², Áö¿ªº°, 2023³â ¹× 2030³â
  • ºÏ¹Ì
    • ºÏ¹ÌÀÇ AI À̹ÌÁö »ý¼º±â ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2017-2030³â
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • À¯·´ÀÇ AI À̹ÌÁö »ý¼º±â ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2017-2030³â
    • ¿µ±¹
    • ¿µ±¹ AI À̹ÌÁö »ý¼º±â ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2017-2030³â
    • µ¶ÀÏ
    • ÇÁ¶û½º
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AI À̹ÌÁö »ý¼º±â ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2017-2030³â
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ AI À̹ÌÁö »ý¼º±â ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2017-2030³â
    • ºê¶óÁú
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ AI À̹ÌÁö »ý¼º±â ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2017-2030³â
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹

Á¦7Àå °æÀï »óȲ

  • ÁÖ¿ä ½ÃÀå ÁøÃâ ±â¾÷ÀÇ ÃÖ±Ù µ¿Çâ°ú ¿µÇ⠺м®
  • ±â¾÷ ºÐ·ù
  • ±â¾÷ÀÇ ½ÃÀå Æ÷Áö¼Å´×
  • ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
  • ±â¾÷ È÷Æ®¸Ê ºÐ¼®
  • Àü·« ¸ÅÇÎ
    • È®´ë
    • ÀμöÇÕº´
    • ÆÄÆ®³Ê½Ê°ú Çù¾÷
    • ½ÅÁ¦Ç° ¹ß¸Å
    • ¿¬±¸°³¹ß
  • ±â¾÷ °³¿ä
    • Synthesia
    • Lumen5
    • Muse.ai
    • Rephrase.ai
    • Synths video
    • Raw shorts
    • Pictory
    • FlexClip
    • Designs.Ai
    • InVideo
ksm 24.07.18

AI Image Generator Market Growth & Trends:

The global AI image generator market size is anticipated to reach USD 1.08 billion by 2030, registering a CAGR of 17.7% from 2024 to 2030, according to a new report by Grand View Research, Inc. The increasing demand for visual content, advancements in AI technology, expanding use cases, integration with AR and VR, and ongoing research and development efforts, such as progressive growing GANs or style-based GANs, to generate higher-quality and more realistic images, position the AI image generator market for growth in the future.

Deep learning algorithms, particularly generative adversarial networks (GANs), have revolutionized the field of AI image generation. GANs enable the creation of highly realistic and high-quality images by pitting two neural networks against each other. As deep learning techniques continue to advance, the quality and realism of AI-generated images are improving, driving the market's growth. For instance, in August 2019, NVIDIA Corporation introduced StyleGAN as a significant advancement in GAN-based image generation. StyleGAN allows for generating highly realistic and diverse images by controlling different aspects of the image's style and content. It is widely used in various applications, including art, fashion, and entertainment. It enables users to create unique and visually appealing images by manipulating attributes such as facial features, clothing styles, and artistic styles.

AI image generators are integrated with AR and VR technologies to create immersive and realistic experiences. This integration allows for the real-time generation of high-quality visuals in virtual environments, contributing to the growth of the AI image generator market. For example, AI image generators can generate realistic virtual avatars or create virtual objects with detailed textures and appearances. The demand for AR and VR applications across industries, including gaming, training simulations, and virtual tours, will further drive the adoption of AI image generators. For instance, VR-based flight simulators have been widely adopted for pilot training. These simulations provide a realistic cockpit environment, allowing trainee pilots to practice flight maneuvers, emergency procedures, and instrument operations in a safe and controlled virtual environment.

The applications of AI image generators are expanding beyond traditional fields such as entertainment and gaming. Industries such as fashion, interior design, healthcare, and automotive are increasingly utilizing AI image generators to generate realistic product visuals, simulate design concepts, aid medical imaging, and enhance virtual experiences. Diversifying use cases will drive the demand for AI image generators and fuel market growth. For instance, AI image generators in healthcare can be developed to generate realistic medical images for training purposes or to simulate medical scenarios. Similarly, in architecture and interior design, AI image generators can generate photorealistic renderings of buildings and interior spaces. It is projected to witness the development of more domain-specific AI image generator technologies.

AI Image Generator Market Report Highlights:

  • Deep learning techniques, particularly Generative Adversarial Networks (GANs), have played a crucial role in developing AI image generator technology. Researchers have made notable advancements in network architectures, training methodologies, and loss functions, improving image quality, realism, and diversity. As deep learning continues to evolve, AI image generator technology is expected to benefit from further advancements, driving its growth
  • The advancements in AI algorithms, including generative models like generative adversarial networks (GANs) and variational autoencoders (VAEs), heavily rely on software implementation. The software segment plays a vital role in improving the quality and diversity of AI-generated images by refining the underlying algorithms and optimizing their implementation
  • The E-commerce segment is expected to grow with the highest CAGR from 2024 to 2030. E-commerce platforms heavily rely on high-quality product images to attract customers and drive sales. AI image generators can play a significant role in generating realistic product images, enabling businesses to showcase their products visually appealingly
  • Prominent countries in the Asia Pacific region, including China, India, and Japan, have robust technology infrastructures, including high-speed internet connectivity and advanced data centers. This infrastructure enables the processing and storing large amounts of data required for AI image generation applications

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation and Scope
  • 1.2. Market Definitions
  • 1.3. Research Methodology
    • 1.3.1. Information Procurement
    • 1.3.2. Information or Data Analysis
    • 1.3.3. Market Formulation & Data Visualization
    • 1.3.4. Data Validation & Publishing
  • 1.4. Research Scope and Assumptions
    • 1.4.1. List of Data Sources

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
  • 2.3. Competitive Insights

Chapter 3. AI Image Generator Market Variables, Trends, & Scope

  • 3.1. Market Introduction/Lineage Outlook
  • 3.2. Market Dynamics
    • 3.2.1. Market Drivers Analysis
    • 3.2.2. Market Restraints Analysis
    • 3.2.3. Industry Opportunities
    • 3.2.4. Industry Challenges
  • 3.3. AI Image Generator Market Analysis Tools
    • 3.3.1. Porter's Analysis
    • 3.3.2. PESTEL Analysis

Chapter 4. AI Image Generator Market: Component Estimates & Trend Analysis

  • 4.1. Segment Dashboard
  • 4.2. AI Image Generator Market: Component Movement Analysis, 2023 & 2030 (USD Million)
  • 4.3. Software
    • 4.3.1. Software Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.4. Services
    • 4.4.1. Services Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 5. AI Image Generator Market: End-user Estimates & Trend Analysis

  • 5.1. Segment Dashboard
  • 5.2. AI Image Generator Market: End-user Movement Analysis, 2023 & 2030 (USD Million)
  • 5.3. Media & Entertainment
    • 5.3.1. Media & Entertainment Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.4. Healthcare
    • 5.4.1. Healthcare Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.5. Fashion
    • 5.5.1. Fashion Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.6. Social Media
    • 5.6.1. Social Media Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.7. E-commerce
    • 5.7.1. E-commerce Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.8. Others
    • 5.8.1. Others Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 6. AI Image Generator Market: Regional Estimates & Trend Analysis

  • 6.1. AI Image Generator Market Share, By Region, 2023 & 2030 (USD Million)
  • 6.2. North America
    • 6.2.1. North America AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.2.2. U.S.
      • 6.2.2.1. U.S. AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.2.3. Canada
      • 6.2.3.1. Canada AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.2.4. Mexico
      • 6.2.4.1. Mexico AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.3. Europe
    • 6.3.1. Europe AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.3.2. UK
    • 6.3.3. UK AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.3.4. Germany
      • 6.3.4.1. Germany AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.3.5. France
      • 6.3.5.1. France AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.4. Asia Pacific
    • 6.4.1. Asia Pacific AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.4.2. China
      • 6.4.2.1. China AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.4.3. Japan
      • 6.4.3.1. Japan AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.4.4. India
      • 6.4.4.1. India AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.4.5. South Korea
      • 6.4.5.1. South Korea AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.4.6. Australia
      • 6.4.6.1. Australia AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.5. Latin America
    • 6.5.1. Latin America AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.5.2. Brazil
      • 6.5.2.1. Brazil AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.6. Middle East and Africa
    • 6.6.1. Middle East and Africa AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.6.2. KSA
      • 6.6.2.1. KSA AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.6.3. UAE
      • 6.6.3.1. UAE AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 6.6.4. South Africa
      • 6.6.4.1. South Africa AI Image Generator Market Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 7. Competitive Landscape

  • 7.1. Recent Developments & Impact Analysis by Key Market Participants
  • 7.2. Company Categorization
  • 7.3. Company Market Positioning
  • 7.4. Company Market Share Analysis
  • 7.5. Company Heat Map Analysis
  • 7.6. Strategy Mapping
    • 7.6.1. Expansion
    • 7.6.2. Mergers & Acquisition
    • 7.6.3. Partnerships & Collaborations
    • 7.6.4. New Product Launches
    • 7.6.5. Research And Development
  • 7.7. Company Profiles
    • 7.7.1. Synthesia
      • 7.7.1.1. Participant's Overview
      • 7.7.1.2. Financial Performance
      • 7.7.1.3. Product Benchmarking
      • 7.7.1.4. Recent Developments
    • 7.7.2. Lumen5
      • 7.7.2.1. Participant's Overview
      • 7.7.2.2. Financial Performance
      • 7.7.2.3. Product Benchmarking
      • 7.7.2.4. Recent Developments
    • 7.7.3. Muse.ai
      • 7.7.3.1. Participant's Overview
      • 7.7.3.2. Financial Performance
      • 7.7.3.3. Product Benchmarking
      • 7.7.3.4. Recent Developments
    • 7.7.4. Rephrase.ai
      • 7.7.4.1. Participant's Overview
      • 7.7.4.2. Financial Performance
      • 7.7.4.3. Product Benchmarking
      • 7.7.4.4. Recent Developments
    • 7.7.5. Synths video
      • 7.7.5.1. Participant's Overview
      • 7.7.5.2. Financial Performance
      • 7.7.5.3. Product Benchmarking
      • 7.7.5.4. Recent Developments
    • 7.7.6. Raw shorts
      • 7.7.6.1. Participant's Overview
      • 7.7.6.2. Financial Performance
      • 7.7.6.3. Product Benchmarking
      • 7.7.6.4. Recent Developments
    • 7.7.7. Pictory
      • 7.7.7.1. Participant's Overview
      • 7.7.7.2. Financial Performance
      • 7.7.7.3. Product Benchmarking
      • 7.7.7.4. Recent Developments
    • 7.7.8. FlexClip
      • 7.7.8.1. Participant's Overview
      • 7.7.8.2. Financial Performance
      • 7.7.8.3. Product Benchmarking
      • 7.7.8.4. Recent Developments
    • 7.7.9. Designs.Ai
      • 7.7.9.1. Participant's Overview
      • 7.7.9.2. Financial Performance
      • 7.7.9.3. Product Benchmarking
      • 7.7.9.4. Recent Developments
    • 7.7.10. InVideo
      • 7.7.10.1. Participant's Overview
      • 7.7.10.2. Financial Performance
      • 7.7.10.3. Product Benchmarking
      • 7.7.10.4. Recent Developments
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦