![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1530194
¼¼°èÀÇ ÀÚÀ²ÁÖÇà¿Â÷ ½ÃÀå - ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼ : ÀÚµ¿È ±×·¹À̵庰, ¿Â÷ À¯Çüº°, ¿ëµµº°, Áö¿ªº°, ºÎ¹® ¿¹Ãø(2024-2030³â)Autonomous Train Market Size, Share & Trends Analysis Report By Automation Grade, By Train Type, By Application (Passenger, Freight), By Region, And Segment Forecasts, 2024 - 2030 |
ÀÚÀ²ÁÖÇà¿Â÷ ½ÃÀå ±Ô¸ð¿Í µ¿Çâ
ÀÚÀ²ÁÖÇà¿Â÷ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 98¾ï 2,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, 2024³âºÎÅÍ 2030³â¿¡ °ÉÃÄ CAGR 5.9%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚÀ²ÁÖÇà¿Â÷¶õ »ç¶÷ÀÇ ¿îÀüÀÚ ¾øÀÌ ¿îÇàÇÒ ¼ö ÀÖ´Â ¿Â÷ÀÔ´Ï´Ù. ÀÌ ±â¼úÀº È¿À²¼º°ú ¾ÈÀü¼º Çâ»óÀ¸·Î öµµ ¿©Çà¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ °¡´É¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¼¼°è ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ´Â °ÍÀº ¾ÈÀüÁß½ÃÀÇ °íÁ¶, È¿À²ÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¿î¼Û¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¿Â÷ÀÇ ÀÚÀ²ÁÖÇà ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø µîÀÇ ¿äÀÎÀÔ´Ï´Ù.
ÀÚÀ² ÁÖÇà ¿Â÷´Â ¼¾¼, Ä«¸Þ¶ó, ¾ÈÅ׳ª, LIDAR(Light Detection and Ranging), RADAR(Radio Detection and Ranging) ¹× °í±Þ ÄÄÇ»ÅÍ ½Ã½ºÅÛÀÇ Á¶ÇÕ¿¡ µû¶ó ÁÖº¯ »óȲÀ» ÀνÄÇÏ°í ¼Óµµ ¹× ºê·¹ÀÌÅ© ¸¦ Á¦¾îÇÏ°í ´ÙÀ̾Ƹóµå¸¦ ÁؼöÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 8¿ù, °í±Þ °¨Áö ¹× Áö°¢ ½Ã½ºÅÛÀÇ ¼±±¸ÀÚÀÎ Aeva Inc.´Â öµµ ÀÚµ¿È ¼Ö·ç¼Ç Á¦°ø¾÷üÀÎ Railergy»ç°¡ Aeva Inc.ÀÇ ÃÖ÷´Ü Á֯ļö º¯Á¶ ¿¬¼ÓÆÄ(FMCW) 4D LiDAR ±â¼úÀ» äÅÃÇÏ¿© ȸ»çÀÇ ÀÚÀ² ¿Â÷ ¿îÇà ¼Ö·ç¼ÇÀÇ Áö°¢ ½Ã½ºÅÛÀ» °¡µ¿Çß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù.
Aeva Inc.ÀÇ Aeries II ¼¾¼´Â ¸Å¿ì Áß¿äÇÑ ½Ç½Ã°£ ¼Óµµ µ¥ÀÌÅÍ¿Í °íÇØ»óµµ °¨Áö ±â´ÉÀ» Á¦°øÇÏ¿© ¹«ÀÎ ¿Â÷ÀÇ ¾ÈÀüÇÑ ¿îÇàÀ» ¹æÇØÇÒ ¼ö ÀÖ´Â Àå¾Ö¹°À» °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ ±â¼úÀÇ Áøº¸°¡ ÁøÇàµÇ¾î ÀÚÀ²ÁÖÇà¿Â÷¿¡ LIDAR³ª RADARµîÀÇ ±â¼úÀÌ Ã¤¿ëµÇ°Ô µÈ °ÍÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
°Ô´Ù°¡ µµ½ÃÈÀÇ ÁøÀüÀ̶ó´Â °úÁ¦°¡ ÀÖ´Â °¡¿îµ¥, ¸ðºô¸®Æ¼ÀÇ Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ, ½ÃÀåÀ» ´õ¿í °ßÀÎÇϰí ÀÖ½À´Ï´Ù. µµ½Ã Áö¿ªÀÇ Àα¸ ¹Ðµµ°¡ ³ô¾ÆÁü¿¡ µû¶ó µµ·Î ±â¹Ý ¿î¼Û¿¡¼ öµµ ±â¹Ý ¿î¼ÛÀ¸·ÎÀÇ ÀüȯÀÌ ÇöÀúÇØÁö°í ÀÚÀ² ÁÖÇà ¿Â÷ ½ÃÀå¿¡ ¸Å·ÂÀûÀÎ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¿î¼Û ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡ ÀÇÇØ ÃßÁøµÇ¾î ģȯ°æ µµ½Ã À̵¿¼º¿¡ ÁßÁ¡À» µÓ´Ï´Ù. ¶ÇÇÑ, ÈÆ·ÃµÈ ¿îÀüÀÚÀÇ ºÎÁ·ÀÌ ´çºÐ°£ ¿¹ÃøµÇ±â ¶§¹®¿¡ ÀÚÀ²ÁÖÇà¿Â÷ ±â¼úÀÇ ±ä±Þ¼º°ú °ü·Ã¼ºÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù.
2030³â 6¿ù, Hitachi Rail STS´Â È£³î·ê·çÀÇ »õ·Î¿î ÁöÇÏö ½Ã½ºÅÛ '½ºÄ«À̶óÀÎ'ÀÇ 1±â °ø»ç°¡ ¿Ï·áµÇ¾î ¿©°´ ¼ºñ½º¸¦ ½ÃÀÛÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. À̰ÍÀº ¹Ì±¹ ÃÖÃÊÀÇ ¿ÏÀü ÀÚÀ² ÁÖÇàÇü ÁöÇÏö ½Ã½ºÅÛÀÇ µ¥ºß°¡ µË´Ï´Ù. ÀÌ ¿ÏÀü Àüµ¿ ½Ã½ºÅÛÀº °³ÀÎÀ» Áö¼Ó °¡´ÉÇÑ ±³Åë ¼ö´ÜÀ¸·Î À̵¿½ÃÄÑ ÀÚ°¡¿ë Â÷·®¿¡¼º¸´Ù ±ú²ýÇϰí È¥ÀâÀÌ ÀûÀº ȯ°æÀ¸·Î À̵¿ÇÕ´Ï´Ù. ÀÌ º¯È´Â ¹èÃâ °¡½º¸¦ ÁÙÀÌ°í ±³Åë üÁõÀ» ¿ÏÈÇϸç È£³î·ê·ç Áֹΰú °ü±¤°´ ¸ðµÎ¿¡°Ô ÀÌÀÍÀ» °¡Á®´ÙÁÖ±â À§ÇÑ °ÍÀÔ´Ï´Ù. ¿©·¯ Á¦Á¶¾÷üÀÇ ÀÌ·¯ÇÑ ³ë·ÂÀº ½ÃÀå ¼ºÀå¿¡ ÁÁÀº Àç·á°¡ µÉ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.
ÀÚÀ²ÁÖÇà ¿Â÷ ½Ã½ºÅÛÀÇ °³¹ß, ¼³Ä¡ ¹× À¯Áöº¸¼ö¿¡´Â ¸Å¿ì ¸¹Àº ºñ¿ëÀÌ µé±â ¶§¹®¿¡ öµµ »ç¾÷ÀÚ¿¡°Ô´Â Å« °æÁ¦Àû À庮ÀÌ µË´Ï´Ù. ÀÚÀ²ÁÖÇà ¿Â÷´Â ±âÁ¸ öµµ¸Á¿¡ ÀûÇÕÇÏÁö ¾ÊÀ» ¼ö ÀÖ´Â ´ë±Ô¸ð ÀÎÇÁ¶ó º¯°æÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÅëÇÕ°ú ¹èÄ¡°¡ º¹ÀâÇØÁý´Ï´Ù. °Ô´Ù°¡ ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀº ¿¹Ãø ºÒ°¡´ÉÇÑ »ç°Ç°ú ±ä±Þ »óȲ¿¡ È¿°úÀûÀ¸·Î ´ëÀÀÇϱâ À§ÇØ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖÀ¸¸ç, Àΰ£ ¿îÀüÀÚÀÇ ÀûÀÀ ´É·ÂÀ̳ª ÀÇ»ç °áÁ¤ ´É·Â ÀÌÇÏ·Î ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚÀ²ÁÖÇà ¿Â÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÇØÅ·°ú »çÀ̹ö °ø°ÝÀÇ À§Çèµµ Å« ¿ì·Á »çÇ×ÀÔ´Ï´Ù. È¿°úÀûÀÎ Ä§ÇØ°¡ ¹ß»ýÇÏ¸é ±âÂ÷°¡ ÁÖÇà ºÒ´ÉÀÌ µÇ°Å³ª Å»ÃëµÉ ¼ö ÀÖ¾î ¾ÈÀü¼ºÀÌ ¼Õ»óµË´Ï´Ù. µû¶ó¼ ³ôÀº ºñ¿ë, ÀÎÇÁ¶ó ¹®Á¦, »çÀ̹ö º¸¾È À§Çè µîÀÇ ¿äÀÎÀÌ ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÚÀ² ÁÖÇà ¿Â÷ ¼¼°è ½ÃÀå º¸°í¼ ¹× ¼¼ºÐÈ
ÀÌ º¸°í¼´Â ¼¼°è, Áö¿ª ¹× ±¹°¡ ¼öÁØ¿¡¼ ¼öÀÍ ¼ºÀåÀ» ¿¹ÃøÇϰí 2018³âºÎÅÍ 2030³â±îÁö °¢ ÇÏÀ§ ºÎ¹®¿¡ ´ëÇÑ ÃֽŠ»ê¾÷ µ¿Ç⠺м®À» Á¦°øÇÕ´Ï´Ù. ÀÌ ¼³¹® Á¶»ç¿¡¼ ±×·£µå ºä ¸®¼Ä¡´Â ¼¼°è ÀÚÀ² ÁÖÇà ¿Â÷ ½ÃÀåÀ» ÀÚµ¿È µî±Þ, ¿Â÷ À¯Çü, ¿ëµµ ¹× Áö¿ª¿¡ µû¶ó ¼¼ºÐÈÇÕ´Ï´Ù.
¹Ì±¹
ij³ª´Ù
¸ß½ÃÄÚ
µ¶ÀÏ
¿µ±¹
ÇÁ¶û½º
Áß±¹
Àεµ
ÀϺ»
È£ÁÖ
Çѱ¹
ºê¶óÁú
¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
»ç¿ìµð¾Æ¶óºñ¾Æ
³²¾ÆÇÁ¸®Ä«
Autonomous Train Market Size & Trends
The global autonomous train market size was estimated at USD 9.82 billion in 2023 and is expected to grow at a CAGR of 5.9% from 2024 to 2030. An autonomous train is a train capable of operating without a human driver. This technology has the potential to revolutionize rail travel by offering increased efficiency and safety. The global market is driven by factors such as increased safety focus, growing demand for efficient and sustainable transportation, and government support for autonomous technologies in trains.
Autonomous trains rely on a combination of sensors, cameras, antennas, Light Detection and Ranging (LIDAR), Radio Detection and Ranging (RADAR), and advanced computer systems to perceive their surroundings, control speed and braking, and adhere to schedules. For instance, in August 2023, Aeva Inc., a pioneer in advanced sensing and perception systems, announced that Railergy, a provider of railway automation solutions, has selected Aeva Inc.'s cutting-edge Frequency Modulated Continuous Wave (FMCW) 4D LiDAR technology to power the perception system for its autonomous train operation solution.
Aeva Inc.'s Aeries II sensors offer crucial real-time velocity data and high-resolution sensing capabilities, enabling the detection of obstacles that could potentially impede the safe operation of driverless trains. Thus, growing technological advancements and increased adoption of technologies such as LIDAR and RADAR in autonomous trains are further boosting the growth of the market.
Furthermore, the market is further driven by the rising demand for enhanced mobility amidst the challenges of increasing urbanization. As urban areas become more densely populated, the shift from road-based to rail-based transportation is becoming more evident, presenting a compelling opportunity for the autonomous train market. This transition is driven by the need for efficient and sustainable transportation solutions, aligning with the growing emphasis on environmentally friendly urban mobility. Moreover, the foreseeable shortage of trained drivers in the immediate future highlights the urgency and relevance of autonomous train technology.
In June 2030, Hitachi Rail STS announced the completion and commencement of passenger service for the first phase of Honolulu's new metro system, named 'Skyline'. This marks the debut of the first fully autonomous metro system in the U.S. The fully electrically powered system will transition individuals to sustainable transportation, shifting them away from private cars and toward a cleaner, less congested environment. This shift aims to diminish emissions and alleviate traffic congestion, benefitting both residents and visitors in Honolulu. Such initiatives by several manufacturers are expected to bode well for the growth of the market.
The development, installation, and maintenance of autonomous train systems can be extremely expensive, posing a significant financial barrier for rail operators. Autonomous trains require extensive infrastructure changes that may not be compatible with existing railway networks, making integration and deployment complex. In addition, autonomous systems may struggle to effectively respond to unpredictable events or emergencies, potentially falling short of the adaptability and decision-making capabilities of human drivers. In addition, the risk of hacking and cyberattacks on autonomous train systems is a major concern, as an effective breach could potentially disable or hijack the trains, compromising safety. Thus, factors such as high costs, infrastructure challenges, and cybersecurity risks could hamper the growth of the market.
Global Autonomous Train Market Report Segmentation
The report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global autonomous train market based on automation grade, train type, application and region.
U.S.
Canada
Mexico
Germany
UK
France
China
India
Japan
Australia
South Korea
Brazil
UAE
Kingdom of Saudi Arabia
South Africa