![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1530608
ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀå ±Ô¸ð, Á¡À¯À² ¹× µ¿Ç⠺м® º¸°í¼ : ¼Ö·ç¼Ç À¯Çü, ¹èÆ÷, ¿ëµµ, Áö¿ª ¹× ºÎ¹®º° ¿¹Ãø(2024-2030³â)In-store Analytics Market Size, Share & Trends Analysis Report By Solution Type (Shopper Traffic Analysis, Inventory Management), By Deployment (Cloud, On-premise), By Application, By Region, And Segment Forecasts, 2024 - 2030 |
ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀå ±Ô¸ð¿Í Æ®·»µå
2023³â ¼¼°è ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀå ±Ô¸ð´Â 41¾ï 7,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, 2024-2030³â±îÁö ¿¬Æò±Õ 21.8%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀº ±â¼ú ¹ßÀü°ú ¼Ò¸Å¾÷À» °ÈÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷üµéÀº °í°´ Çൿ¿¡ ´ëÇÑ ´õ ±íÀº ÅëÂû·ÂÀ» ¾ò°í, ¿î¿µÀ» °£¼ÒÈÇϸç, Àü¹ÝÀûÀÎ ¼îÇÎ °æÇèÀ» °³¼±Çϱâ À§ÇØ ¸ÅÀå ³» ºÐ¼®À» µµÀÔÇÏ´Â °æÇâÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À̸¦ À§ÇØ ¸ÅÀå ³» ¼¾¼, Ä«¸Þ¶ó, IoT ±â±â¸¦ ¹èÄ¡ÇÏ¿© ¼îÇΰ´ÀÇ ¿òÁ÷ÀÓ, ¹ß°ÉÀ½ ÆÐÅÏ µî ´Ù¾çÇÑ Ãø¸éÀ» ¸ð´ÏÅ͸µÇÏ°í ºÐ¼®ÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ.
ÀÌ·¯ÇÑ ±â¼úÀº °í°´ÀÌ »óǰÀ» ¾î¶»°Ô Á¢ÇÏ°í ¸ÅÀåÀ» ¾î¶»°Ô À̵¿ÇÏ´ÂÁö¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ´ã°í ÀÖ½À´Ï´Ù. ¼öÁýµÈ µ¥ÀÌÅÍ´Â °í±Þ ºÐ¼® Ç÷§ÆûÀ» ÅëÇØ ó¸® ¹× ºÐ¼®µË´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº ¾Ë°í¸®Áò°ú ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© µ¥ÀÌÅÍ¿¡¼ ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» µµÃâÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ¼Ò¸Å¾÷ü´Â µ¿¼± ºÐ¼®À» ÅëÇØ ¸ÅÀå ·¹À̾ƿôÀ» ÃÖÀûÈÇϰí, ¼ö¿ä ÆÐÅÏÀ» ¿¹ÃøÇÏ¿© Àç°í °ü¸®¸¦ °ÈÇϸç, °í°´ÀÇ ¼±È£µµ¿Í Çൿ¿¡ µû¶ó Ÿ°ÙÆÃµÈ ¸¶ÄÉÆÃ Àü·«À» ½ÇÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®Àû Á¢±Ù ¹æ½ÄÀº ¾÷¹« È¿À²À» ³ôÀÌ´Â µ¥ µµ¿òÀÌ µÉ »Ó¸¸ ¾Æ´Ï¶ó, °í°´ ¸¸Á·µµ¿Í Ãæ¼ºµµ¸¦ ³ôÀÌ´Â °³ÀÎÈµÈ ¼îÇÎ °æÇèÀ» âÃâÇÏ´Â µ¥¿¡µµ µµ¿òÀÌ µË´Ï´Ù.
°³ÀÎÈµÈ °í°´ °æÇè°ú ¿øÈ°ÇÑ ¿È´Ïä³Î ÅëÇÕ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ÀÌ ½ÃÀåÀº ´«¿¡ ¶ç°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷üµéÀº ºÐ¼® ¼Ö·ç¼ÇÀ» µµÀÔÇÏ¿© °³º° °í°´ÀÇ ÃëÇâ°ú Çൿ¿¡ µû¶ó ÇÁ·Î¸ð¼Ç, Ãßõ, ¼ºñ½º¸¦ ¸ÂÃãÈÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °í°´ Á᫐ Á¢±Ù ¹æ½ÄÀº ¸¸Á·µµ¸¦ ³ôÀ̰í, ¸ÅÃâ ÀüȯÀ²À» ³ôÀ̸ç, °í°´ Ãæ¼ºµµ¸¦ ³ôÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀνºÅä¾î ¾Ö³Î¸®Æ½½º´Â ¿Â¶óÀΰú ¿ÀÇÁ¶óÀÎ ¼Ò¸Å ä³ÎÀÇ ÀλçÀÌÆ®¸¦ ÅëÇÕÇÏ¿© ´Ù¾çÇÑ Á¢Á¡À» °¡·ÎÁö¸£´Â °í°´ ¿©Á¤¿¡ ´ëÇÑ ÅëÇÕÀûÀÎ °üÁ¡À» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ¼Ò¸Å¾÷ü´Â È¿À²ÀûÀΠŬ¸¯ ¾Ø ÄÝ·ºÆ® ¼ºñ½º, °³ÀÎÈµÈ ¸ÅÀå ³» »óÈ£ ÀÛ¿ë µî ÀϰüµÈ °æÇèÀ» Á¦°øÇÔÀ¸·Î½á µðÁöÅзΠ¿¬°áµÈ ¼ÒºñÀÚÀÇ ÁøÈÇÏ´Â ¼ö¿ä¿¡ È¿°úÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. Ä¡¿ÇÑ °æÀï ¼Ó¿¡¼ Â÷º°È¸¦ ²ÒÇÏ°í °æÀï¿¡¼ ¿ìÀ§¸¦ Á¡Çϱâ À§Çؼ´Â ¸ÅÀå ³» ºÐ¼®À» È¿°úÀûÀ¸·Î Ȱ¿ëÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.
µðÁöÅÐ ¸¶ÄÉÆÃ Àü·«°úÀÇ ÅëÇÕÀº ÀνºÅä¾î ¾Ö³Î¸®Æ½½º¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀνºÅä¾î ¾Ö³Î¸®Æ½½º¸¦ ÅëÇØ ¼Ò¸Å¾÷ü´Â °í°´ÀÇ Áï°¢ÀûÀÎ ´ÏÁî¿Í ¼±È£µµ¿¡ µû¶ó Àû½Ã¿¡ ÀûÀýÇÑ ÇÁ·Î¸ð¼ÇÀ» Á¦°øÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀνºÅä¾î ¾Ö³Î¸®Æ½½º Ç÷§ÆûÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¸é ¼Ò¸Å¾÷ü´Â °í°´ÀÇ ¼îÇÎ Çൿ°ú ÃëÇâ¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¸é ¸ÅÀå ³» À§Ä¡, °ú°Å ±¸¸Å ÀÌ·Â, °Ë»ö ÆÐÅÏ µîÀ» ±â¹ÝÀ¸·Î °í°´ ¸ÂÃãÇü ¸¶ÄÉÆÃ Ä·ÆäÀÎÀ» Àü°³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀνºÅä¾î ¾Ö³Î¸®Æ½½º¸¦ µðÁöÅÐ ¸¶ÄÉÆÃ Àü·«°ú ÅëÇÕÇÏ¸é ¿È´Ïä³Î ¸¶ÄÉÆÃ È°µ¿À» ¿ëÀÌÇÏ°Ô Çϰí, ¼Ò¸Å¾÷ü´Â ¿Â¶óÀΰú ¿ÀÇÁ¶óÀÎ ÇÁ·Î¸ð¼Ç Ȱµ¿À» µ¿±âÈÇÏ¿© ¿øÈ°ÇÑ ¼îÇÎ °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¿Â¶óÀÎÀ» Ž»öÇÏ´Â °í°´ÀÌ ¸ÅÀå ³» ºÐ¼®À» ÅëÇØ ¼öÁýµÈ °ú°Å »óÈ£ÀÛ¿ë ¹× À§Ä¡ µ¥ÀÌÅÍ¿¡¼ ¾òÀº ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÏ¿© ¸ÅÀå¿¡¼ »ç¿ëÇÒ ¼ö ÀÖ´Â °³ÀÎÈµÈ Á¦¾ÈÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
¼¼°è ÀνºÅä¾î ¾Ö³Î¸®Æ½½º ½ÃÀå º¸°í¼ ¼¼ºÐÈ
ÀÌ º¸°í¼´Â 2018-2030³â ¼¼°è, Áö¿ª ¹× ±¹°¡º° ¸ÅÃâ ¼ºÀåÀ» ¿¹ÃøÇÏ°í °¢ ÇÏÀ§ ºÎ¹®ÀÇ ÃֽŠ»ê¾÷ µ¿Çâ¿¡ ´ëÇÑ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. ÀÌ ¿¬±¸¿¡¼ Grand View Research, Inc.´Â ¼Ö·ç¼Ç À¯Çü, ¹èÆ÷, ¿ëµµ ¹× Áö¿ª¿¡ µû¶ó ¼¼°è ¸ÅÀå ³» ºÐ¼® ½ÃÀå º¸°í¼¸¦ ¼¼ºÐÈÇß½À´Ï´Ù.
In-store Analytics Market Size & Trends
The global in-store analytics market size was estimated at USD 4.17 billion in 2023 and is projected to grow at a CAGR of 21.8% from 2024 to 2030. The market is experiencing robust growth driven by technological advancements and rising demand for data-driven solutions that can enhance retail operations. Retailers are increasingly adopting in-store analytics to gain deeper insights into customer behavior, simplify operations, and improve the overall shopping experience. This involves the deployment of sensors, cameras, and IoT devices within stores to monitor and analyze various aspects, such as shopper movements and foot traffic patterns.
These technologies provide real-time data on how customers interact with products and navigate through the store. The gathered data is then processed and analyzed using advanced analytics platforms. These platforms utilize algorithms and machine learning to extract actionable insights from the data. For instance, retailers can optimize store layouts based on traffic flow analysis, enhance inventory management by predicting demand patterns, and implement targeted marketing strategies based on customer preferences and behaviors. This analytical approach helps in operational efficiency and also in creating personalized shopping experiences that can drive customer satisfaction and loyalty.
The market is experiencing notable expansion driven by the increasing focus on personalized customer experiences and seamless omnichannel integration. Retailers are embracing analytics solutions to customize promotions, recommendations, and services according to individual shopper preferences and behaviors. This customer-centric approach enhances satisfaction, boosts sales conversions, and cultivates customer loyalty. In-store analytics integrate insights from both online and offline retail channels, offering a unified perspective on customer journeys across various touchpoints. This holistic approach empowers retailers to provide cohesive experiences such as efficient click-and-collect services and personalized in-store interactions, effectively meeting the evolving demands of digitally connected consumers. As competition intensifies, the effective use of in-store analytics becomes increasingly crucial for retailers aiming to differentiate themselves and stay ahead in the competitive retail sector.
Integration with digital marketing strategies is crucial for in-store analytics because it enables retailers to deliver timely and relevant promotions tailored to customers' immediate needs and preferences. Utilizing real-time data from in-store analytics platforms, retailers gain insights into customer behavior and preferences while they shop. This data empowers retailers to create personalized marketing campaigns targeting customers based on their location within the store, past purchase history, and browsing patterns. Integrating in-store analytics with digital marketing strategies also facilitates omnichannel marketing efforts, allowing retailers to synchronize online and offline promotional activities for a seamless shopping experience. For instance, a customer browsing online might receive a personalized offer that they can redeem in-store, utilizing insights from previous interactions and current location data gathered through in-store analytics.
Global In-store Analytics Market Report Segmentation
This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global in-store analytics market report based on solution type, deployment, application, and region:
U.S.
Canada
Mexico
UK
Germany
France
China
Japan
India
South Korea
Australia
Brazil
KSA
UAE
South Africa