![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1575288
TPU(Tensor Processing Unit) ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® ¸®Æ÷Æ® : ¿ëµµº°, µµÀÔ ¸ðµåº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°, ºÎ¹® ¿¹Ãø(2024-2030³â)Tensor Processing Unit Market Size, Share & Trends Analysis Report By Application, By Deployment Mode, By End-use, By Region, And Segment Forecasts, 2024 - 2030 |
¼¼°èÀÇ TPU(Tensor Processing Unit) ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 28¾ï 4,890¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2024-2030³â¿¡ CAGR 31.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
´Ù¾çÇÑ »ê¾÷¿¡¼ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀåÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, TPU´Â ƯÈ÷ µö·¯´× ÀÛ¾÷À» °¡¼ÓÈÇϵµ·Ï ¼³°èµÇ¾î AI ±â¹Ý ¿ëµµ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ÀÇ·á, ±ÝÀ¶, ÀÚµ¿Â÷ µîÀÇ ºÐ¾ß¿¡¼ TPU´Â ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÇコÄÉ¾î ºÐ¾ß¿¡¼´Â ÀÇ·á ¿µ»ó ¹× Áø´Ü AI¿¡, ±ÝÀ¶ ºÐ¾ß¿¡¼´Â »ç±â ŽÁö ¹× ¾Ë°í¸®Áò Æ®·¹À̵ù¿¡ TPU°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹ÝÀÇ TPU µµÀÔµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ ±¸±Û Ŭ¶ó¿ìµå¸¦ ÅëÇØ ±â¾÷ÀÌ È®Àå °¡´ÉÇÑ AI ¸®¼Ò½º¿¡ Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Å¬¶ó¿ìµå µ¿ÇâÀº ±â¾÷ÀÌ °í°¡ÀÇ ¿ÂÇÁ·¹¹Ì½º ÀÎÇÁ¶ó ¾øÀ̵µ TPUÀÇ ¼º´ÉÀ» Ȱ¿ëÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, AI µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Á¡Á¡ ´õ º¹ÀâÇØÁö´Â ÀÛ¾÷À» ó¸®Çϱâ À§ÇÑ TPU¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
TPU ½ÃÀåÀº ¿§Áö ÄÄÇ»ÆÃ°ú »ç¹°ÀÎÅͳÝ(IoT) ¿ëµµ¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¿ªÇÒ·Î ÀÎÇØ ¼ºÀåÇϰí ÀÖÀ¸¸ç, TPU´Â ¿§Áö µð¹ÙÀ̽º¿¡ ´õ ¸¹ÀÌ ÅëÇյǾî AI ¸ðµ¨À» µ¥ÀÌÅÍ ¼Ò½º¿¡ ´õ °¡±õ°Ô ½ÇÇàÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ´ë±â ½Ã°£À» ÁÙÀ̰í È¿À²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. È¿À²¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶ ¹× ¹°·ù µîÀÇ »ê¾÷¿¡¼´Â ½º¸¶Æ® ÆÑÅ丮 ¹× ÀÚµ¿È ½Ã½ºÅÛ¿¡¼ ½Ç½Ã°£ ÀÇ»ç°áÁ¤¿¡ TPU°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼´Â ƯÈ÷ ÀÚÀ²ÁÖÇà¿¡¼ AI°¡ ó¸®ÇÏ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®Çϱâ À§ÇØ TPU°¡ Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, Åë½Å ºÐ¾ß¿¡¼µµ TPU´Â ³×Æ®¿öÅ© ÃÖÀûÈ ¹× ¿¹Áöº¸ÀüÀ» °ÈÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀÌ ¼ºÀåÇÔ¿¡ µû¶ó ½º¸¶Æ® ½ÃƼ¿Í Ä¿³ØÆ¼µå ÀÎÇÁ¶ó¿¡ TPU µµÀÔÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÇâÈÄ 10³â°£ TPU ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í °¡¼ÓÈÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
ÀÌ ½ÃÀåÀº ¶ÇÇÑ ¿ÀǼҽº AI ÇÁ·¹ÀÓ¿öÅ©¿Í ¸ÂÃãÇü AI Çϵå¿þ¾î °³¹ßÀÇ ÇýÅÃÀ» ´©¸± Áغñ°¡ µÇ¾î ÀÖÀ¸¸ç, TPU¿Í ȣȯµÇ´Â Åø¿Í ¶óÀ̺귯¸®°¡ Á¡Á¡ ´õ ¸¹ÀÌ Ãâ½ÃµÇ°í ÀÖÀ¸¸ç, ´õ ¸¹Àº °³¹ßÀÚ¿Í ±â¾÷ÀÌ TPU¸¦ AI ¿öÅ©Ç÷ο쿡 ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. TPU¿¡ ÃÖÀûÈµÈ TensorFlow¿Í °°Àº ¿ÀǼҽº Ç÷§ÆûÀ» ÅëÇØ ±â¾÷Àº AI ¸ðµ¨À» ½±°Ô ±¸ÃàÇϰí È®ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µû¶ó¼ ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ ¾øÀ̵µ ³ôÀº ¼º´ÉÀ» ÇÊ¿ä·Î ÇÏ´Â ½ºÅ¸Æ®¾÷°ú ¿¬±¸±â°ü¿¡¼ TPUÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI Çϵå¿þ¾î ȸ»ç¿Í ÇÏÀÌÅ×Å© ´ë±â¾÷°úÀÇ Çù¾÷Àº TPU¸¦ º¸´Ù Ä£¼÷ÇÏ°Ô ¸¸µé¾î TPU äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Ŭ¶ó¿ìµå ÇÁ·Î¹ÙÀÌ´õ¿Í AI °³¹ßÀÚ °£ÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ TPU ±â¹Ý AI ¿ëµµÀÇ ¹èÆ÷¸¦ °£¼ÒÈÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº TPUÀÇ º¸±ÞÀ» Áö¼ÓÀûÀ¸·Î Áö¿øÇϰí, TPU¸¦ AI Çϵå¿þ¾îÀÇ ¹Ì·¡¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
The global tensor processing unit market size was estimated at USD 2,848.9 Million in 2023 and is projected to grow at a CAGR of 31.9% from 2024 to 2030. The market is expanding rapidly due to the growing demand for artificial intelligence (AI) and machine learning (ML) across various industries. TPUs are specifically designed to accelerate deep learning tasks, making them vital for AI-driven applications. In sectors like healthcare, finance, and automotive, TPUs process large datasets efficiently.
Healthcare uses TPUs for AI in medical imaging and diagnostics, while the finance sector employs them for fraud detection and algorithmic trading. Cloud-based TPU adoption is also increasing, particularly through Google Cloud, where businesses can access scalable AI resources. This cloud trend allows companies to harness the power of TPUs without the need for expensive on-premises infrastructure. As AI adoption grows, so does the demand for TPUs to handle increasingly complex tasks.
The TPU market is also growing due to its role in enabling edge computing and IoT (Internet of Things) applications. TPUs are becoming more integrated into edge devices, enabling AI models to run closer to data sources, reducing latency, and improving efficiency. Industries such as manufacturing and logistics use TPUs in smart factories and for real-time decision-making in automated systems. The automotive sector, particularly in autonomous driving, is utilizing TPUs to handle the vast amounts of data processed by AI in real time. TPUs are also gaining ground in telecommunications, where they are used to enhance network optimization and predictive maintenance. As edge computing grows, TPU deployment in smart cities and connected infrastructure is expected to rise. This trend will further accelerate the TPU market's growth over the next decade.
The market is also poised to benefit from open-source AI frameworks and the development of custom AI hardware. With the growing availability of TPU-compatible tools and libraries, more developers and enterprises are integrating TPUs into their AI workflows. Open-source platforms such as TensorFlow, optimized for TPUs, make it easier for companies to build and scale AI models. This has led to an increase in TPU adoption across startups and research institutions that need high performance without heavy infrastructure investments. Collaborations between AI hardware companies and tech giants are further pushingTensor Processing Unit (TPU) adoption by making it more accessible. For instance, partnerships between cloud providers and AI developers have simplified the deployment of TPU-powered AI applications. These advancements will continue to support the widespread use of TPUs, positioning them as a key player in the future of AI hardware.
Global Tensor Processing Unit Market Report Segmentation
This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the global tensor processing unit market report based onapplication, deployment mode, end-use, and region: