![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1727983
¼¼°èÀÇ °Ë»ö Áõ° »ý¼º(RAG) ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼ : ±â´Éº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°, Àü°³º°, ÃÖÁ¾ ¿ëµµº° ºÎ¹®º° ¿¹Ãø(2025-2030³â)Retrieval Augmented Generation Market Size, Share & Trend Analysis Report By Function, By Application, By Deployment, By End Use, By Region, And Segment Forecasts, 2025 - 2030 |
¼¼°èÀÇ °Ë»ö Áõ° »ý¼º(RAG) ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 12¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ ¼ºÀå·ü(CAGR) 49.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
°Ë»ö Áõ° »ý¼º ½ÃÀåÀº ÀÚ¿¬¾î ó¸®(NLP)ÀÇ ¹ßÀü°ú Áö´ÉÇü AI ½Ã½ºÅÛ¿¡ ´ëÇÑ Çʿ伺 Áõ°¡·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. °Ë»ö ±â¹Ý Á¢±Ù ¹æ½Ä°ú »ý¼º ±â´ÉÀ» °áÇÕÇÑ RAG ¸ðµ¨Àº °í°´ ¼ºñ½º, ÄÜÅÙÃ÷ »ý¼º, ¿¬±¸¿Í °°Àº »ê¾÷¿¡¼ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ¿ÜºÎ µ¥ÀÌÅÍ ¼Ò½º¿¡ ¾×¼¼½ºÇÏ¿© Á¤È®µµ¸¦ ³ôÀÓÀ¸·Î½á AI°¡ º¸´Ù °ü·Ã¼ºÀÌ ³ô°í ¸Æ¶ôÀ» ÀνÄÇÏ´Â ÀÀ´äÀ» »ý¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ±â¾÷µéÀº ³ôÀº ¼öÁØÀÇ ÄÜÅÙÃ÷ ǰÁúÀ» À¯ÁöÇÏ¸é¼ º¹ÀâÇÑ ¿öÅ©Ç÷θ¦ ÀÚµ¿ÈÇϱâ À§ÇØ RAG·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ChatGPT¿Í °°Àº »ý¼ºÇü AI µµ±¸ÀÇ µîÀåÀ¸·Î °Ë»ö ¸ÞÄ¿´ÏÁòÀ» ÅëÇØ À̸¦ Çâ»ó½ÃŰ´Â µ¥ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. RAG´Â ƯÈ÷ Á¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ¿ëµµ¿¡ ÀûÇÕÇÏ¿© ±â¾÷¿¡°Ô ¸Å·ÂÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä·Î ÀÎÇØ ´Ù¾çÇÑ »ç¿ë »ç·Ê¿¡ ¸Â°Ô RAG ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¼±Çϱâ À§ÇÑ ¿¬±¸ ¹× °³¹ß ³ë·ÂÀÌ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
°Ë»ö Áõ° »ý¼º(RAG) ½ÃÀåÀº »ý¼º ±â´É°ú Á¤È®ÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ °Ë»öÀ» °áÇÕÇÑ °í±Þ AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÇÑ °¡Áö ÁÖ¿ä ÃËÁø¿äÀÎÀº ÀÇ·á, ±ÝÀ¶, °í°´ ¼ºñ½º µî Á¤È®¼º°ú »óȲ ÀÎ½Ä ÀÀ´äÀÌ Áß¿äÇÑ »ê¾÷ Àü¹Ý¿¡¼ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM)ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¶ÇÇÑ, »ý¼ºÇü AI °á°ú¹°ÀÇ ¿À·ù¸¦ ÁÙ¿©¾ß ÇÒ Çʿ伺À¸·Î ÀÎÇØ Á¶Á÷µéÀº ÀÀ´ä ǰÁúÀ» °³¼±Çϱâ À§ÇØ ¿ÜºÎ Áö½Ä ¼Ò½º¸¦ Ȱ¿ëÇÏ´Â RAG ½Ã½ºÅÛÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ±â¾÷ µ¥ÀÌÅÍÀÇ 80% ÀÌ»óÀ» Â÷ÁöÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µÇ´Â ºñÁ¤Çü µ¥ÀÌÅÍÀÇ È®»êÀº °ü·Ã Á¤º¸¸¦ È¿À²ÀûÀ¸·Î ÃßÃâÇϰí ÇÕ¼ºÇÏ´Â RAG ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
±× °¡´É¼º¿¡µµ ºÒ±¸Çϰí RAG ½ÃÀåÀº ¸î °¡Áö µµÀü °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. RAG ¸ðµ¨ ÈÆ·Ã ¹× ¹èÆ÷¿Í °ü·ÃµÈ ³ôÀº ÄÄÇ»ÆÃ ºñ¿ëÀº Áß¼Ò±â¾÷(SME)¿¡°Ô´Â À庮À¸·Î ÀÛ¿ëÇÕ´Ï´Ù. RAG ½Ã½ºÅÛÀ» ±âÁ¸ IT ÀÎÇÁ¶ó¿Í ÅëÇÕÇÏ´Â µ¥ µû¸£´Â º¹À⼺ ¶ÇÇÑ Æ¯È÷ ·¹°Å½Ã ½Ã½ºÅÛÀ» º¸À¯ÇÑ Á¶Á÷¿¡¼ µµÀÔÀ» Á¦ÇÑÇÏ´Â ¿äÀÎÀÔ´Ï´Ù. ƯÈ÷ ÀÇ·á ¹× ±ÝÀ¶°ú °°Àº ±ÔÁ¦ »ê¾÷¿¡¼´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È ¹®Á¦°¡ Ãß°¡ÀûÀÎ Àå¾Ö¹°·Î ÀÛ¿ëÇϴµ¥, RAG ¸ðµ¨Àº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡ ¾×¼¼½ºÇØ¾ß ÇϹǷΠ±ÔÁ¤ Áؼö À§ÇèÀÌ ³ô¾ÆÁý´Ï´Ù. ¶ÇÇÑ, RAG ¼º´ÉÀ» Æò°¡Çϱâ À§ÇÑ Ç¥ÁØÈµÈ ÇÁ·¹ÀÓ¿öÅ©ÀÇ ºÎÀç·Î ÀÎÇØ ±â¾÷µéÀÌ ROI¸¦ Á¤·®ÈÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ¸¸é¼ ±¤¹üÀ§ÇÑ ±¸ÇöÀÌ ´õµð°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
RAG ½ÃÀåÀº ƯÈ÷ °íÁ¤¹Ð AI ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÑ ºÐ¾ß¿¡¼ »ó´çÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÇ·á ¾÷°è¿¡¼´Â ½Ç½Ã°£À¸·Î ÀÇÇÐ ¹®ÇåÀ» °Ë»öÇϰí ÇÕ¼ºÇÏ¿© Áø´Ü Á¤È®µµ¸¦ ³ôÀ̱â À§ÇØ RAG¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀüÀÚ»ó°Å·¡ ¾÷°è¿¡¼´Â Á¦Ç° µ¥ÀÌÅͱâ¹Ý¿¡ µ¿ÀûÀ¸·Î ¾×¼¼½ºÇÏ¿© °í°´°úÀÇ »óÈ£ÀÛ¿ëÀ» °³ÀÎÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿§Áö AI¿Í ¿¬ÇÕ ÇнÀ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ Áö¿¬ ½Ã°£À» ÁÙÀÌ°í µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¸¦ °³¼±ÇÑ RAG ¸ðµ¨À» ¹èÆ÷ÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±æÀÌ ¿¸®°í ÀÖ½À´Ï´Ù. ºÐ¼®°¡µé¿¡ µû¸£¸é, AI ±â¹Ý Áö½Ä °ü¸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, RAG°¡ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. AI °ø±Þ¾÷ü¿Í µµ¸ÞÀκ° ±â¾÷ °£ÀÇ Çù¾÷Àº Çõ½ÅÀ» ´õ¿í ÃËÁøÇÏ¿© Æ´»õ ½ÃÀåÀ» À§ÇÑ ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» âÃâÇÒ °ÍÀÔ´Ï´Ù.
The global retrieval augmented generation market size was estimated at USD 1.2 billion in 2024 and is projected to grow at a CAGR of 49.1% from 2025 to 2030. The retrieval augmented generation market is growing rapidly due to advancements in natural language processing (NLP) and the increasing need for intelligent AI systems. RAG models, which combine retrieval-based approaches with generative capabilities, are becoming popular in industries such as customer service, content generation, and research. These models offer enhanced accuracy by accessing external data sources, allowing AI to generate more relevant, context-aware responses. Companies are turning to RAG to automate complex workflows while maintaining a high level of content quality. The rise of generative AI tools such as ChatGPT has sparked interest in enhancing them with retrieval mechanisms. RAG is particularly suited for applications requiring precision, making it appealing for businesses. This demand is pushing research and development efforts to improve RAG frameworks for diverse use cases.
The Retrieval-Augmented Generation (RAG) market is experiencing significant growth, driven by the increasing demand for advanced AI solutions that combine generative capabilities with accurate, real-time data retrieval. One key driver is the rising adoption of large language models (LLMs) across industries such as healthcare, finance, and customer service, where accuracy and context-aware responses are critical. Additionally, the need for reducing hallucinations in generative AI outputs is pushing organizations to integrate RAG systems, which leverage external knowledge sources to improve response quality. The proliferation of unstructured data, estimated to constitute over 80% of enterprise data, further fuels the demand for RAG solutions to extract and synthesize relevant information efficiently.
Despite its potential, the RAG market faces several challenges. High computational costs associated with training and deploying RAG models pose a barrier for small and medium-sized enterprises (SMEs). The complexity of integrating RAG systems with existing IT infrastructure also limits adoption, particularly in organizations with legacy systems. Data privacy and security concerns, especially in regulated industries like healthcare and finance, present additional hurdles, as RAG models require access to vast datasets, raising compliance risks. Furthermore, the lack of standardized frameworks for evaluating RAG performance slows down widespread implementation as businesses struggle to quantify ROI.
The RAG market presents substantial opportunities, particularly in sectors requiring high-precision AI solutions. The healthcare industry, for instance, can leverage RAG to enhance diagnostic accuracy by retrieving and synthesizing medical literature in real-time. In e-commerce, RAG can personalize customer interactions by dynamically accessing product databases. The growing focus on edge AI and federated learning opens new avenues for deploying RAG models with reduced latency and improved data privacy. According to analysts, investments in AI-powered knowledge management systems are expected to rise, with RAG playing a central role. Collaborations between AI vendors and domain-specific enterprises will further drive innovation, creating tailored solutions for niche markets.
Global Retrieval Augmented Generation Market Report Segmentation
This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2020 to 2030. For this study, Grand View Research has segmented the global retrieval-augmented generation market report based on function, application, deployment, end use, and region.