½ÃÀ庸°í¼­
»óǰÄÚµå
1751424

¼¼°èÀÇ ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Ç⠺м® º¸°í¼­ : À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµ¨º°, ¿ëµµº°, »ê¾÷º°, Áö¿ªº°, ºÎ¹® ¿¹Ãø(2025-2030³â)

Edge Analytics Market Size, Share & Trends Analysis Report By Type (Descriptive Analytics, Prescriptive Analytics), By Component (Solution, Service), By Deployment Model, By Application, By Industry, By Region, And Segment Forecasts, 2025 - 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Grand View Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 150 Pages | ¹è¼Û¾È³» : 2-10ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀå°ú µ¿Çâ :

Grand View Research, Inc.ÀÇ ÃֽŠº¸°í¼­¿¡ µû¸£¸é, ¼¼°è ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå ±Ô¸ð´Â 2025-2030³â 28.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³»°í, 2030³â±îÁö 407¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿§Áö µð¹ÙÀ̽º ÀÚü¿¡¼­ µ¥ÀÌÅÍ ºÐ¼® ¹× 󸮸¦ ¼öÇàÇÔÀ¸·Î½á ·Îº¿Àº Áß¾Ó ÁýÁᫎ ½Ã½ºÅÛ¿¡ Å©°Ô ÀÇÁ¸ÇÏÁö ¾Ê°í ȯ°æ¿¡ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ½Ç½Ã°£ ÀλçÀÌÆ®·Â, ´ë±â ½Ã°£ ´ÜÃà, º¸¾È °­È­, ´ë¿ªÆø ÃÖÀûÈ­¸¦ ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝÀÇ ºÎ»ó°ú ¿§Áö¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿§Áö ¾Ö³Î¸®Æ½½º´Â Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¸¹Àº »ê¾÷ Á¶Á÷µéÀÌ »ç¹°ÀÎÅͳÝ(IoT)À» Ȱ¿ëÇÏ¿© Á¦Á¶ ±â°è, ÆÄÀÌÇÁ¶óÀÎ, ¼³ºñ¸¦ ¸ð´ÏÅ͸µÇϰí ÀÖ½À´Ï´Ù.

IoT´Â ½Ç½Ã°£À¸·Î °ü¸®Çϰí ÇØ¼®Çϱ⠾î·Á¿î µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÀúÀåÇϸç, IoT µð¹ÙÀ̽ºÀÇ µ¥ÀÌÅÍ´Â ¿§Áö ¾Ö³Î¸®Æ½½º·Î º¸³»Á® 󸮵ǰí ÀÌÇØµË´Ï´Ù. ºÐ¼® ¾Ë°í¸®ÁòÀº ¾î¶² µ¥ÀÌÅͰ¡ ÇÊ¿äÇÏ°í ¾î¶² µ¥ÀÌÅͰ¡ ÇÊ¿äÇÏÁö ¾ÊÀºÁö ÆÇ´ÜÇÒ ¶§ Àΰ£À» µ½½À´Ï´Ù. ¸¹Àº ¿ëµµ°ú »ê¾÷¿¡¼­ Àû½Ã¿¡ ÀÇ»ç°áÁ¤À» ³»¸®´Â °ÍÀº ¾÷¹« È¿À²¼ºÀ» ´Þ¼ºÇϰí, ¾ÈÀüÀ» º¸ÀåÇϸç, ¿ì¼öÇÑ °í°´ °æÇèÀ» Á¦°øÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷, »ê¾÷ ÀÚµ¿È­, ½º¸¶Æ®½ÃƼ¿Í °°Àº ƯÁ¤ ¿ëµµ´Â ½Ç½Ã°£ ºÐ¼® ±â´ÉÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

¿§Áö ¾Ö³Î¸®Æ½½º´Â ¿§Áö¿¡¼­ÀÇ Áï°¢ÀûÀΠó¸®¿Í ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ¿© ´ë±â ½Ã°£À» ÃÖ¼ÒÈ­ÇÏ°í ½Å¼ÓÇÑ ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ, µå·Ð ¹× ·Îº¿ °øÇÐ µîÀÇ »ê¾÷Àº ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ±â´É¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹æ´ëÇÑ ¾çÀÇ ¼¾¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í º¯È­Çϴ ȯ°æ°ú »óȲ¿¡ Áï°¢ÀûÀ¸·Î ´ëÀÀÇØ¾ß ÇÕ´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½º´Â ¿§Áö¿¡¼­ÀÇ ¼¾¼­ µ¥ÀÌÅÍ ºÐ¼®°ú ÇØ¼®À» ÅëÇØ Áß¾Ó ÁýÁß½Ä Ã³¸®¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ ÀÌ·¯ÇÑ ÀÚÀ² ½Ã½ºÅÛÀÌ ½Å¼ÓÇϰí Á¤È®ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

¼¼°è Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿¡¼­ ¹ß»ýÇÏ´Â ¹æ´ëÇÑ µ¥ÀÌÅͰ¡ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖÀ¸¸ç, ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º°¡ ³×Æ®¿öÅ© µð¹ÙÀ̽º¿¡¼­ ¿§Áö ¾Ö³Î¸®Æ½½º ¼ºÀåÀÇ Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ¿§Áö ¾Ö³Î¸®Æ½½º µµÀÔÀ¸·Î È®À强 ¹× ºñ¿ë ÃÖÀûÈ­°¡ °­È­µË´Ï´Ù. ºÐ¼® ÄÄÇ»ÆÃÀº Áß¾Ó ÁýÁᫎ ½ºÅ丮Áö ½Ã½ºÅÛ¿¡¼­ µ¥ÀÌÅͰ¡ °Ë»öµÉ ¶§±îÁö ±â´Ù·È´Ù°¡ ºÐ¼® ¿ëµµ¸¦ ½ÇÇàÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó, µð¹ÙÀ̽ºÀÇ ¿§Áö¿¡¼­ ½ÇÇàµË´Ï´Ù. ¶ÇÇÑ, Á¦Á¶ »ê¾÷¿¡¼­´Â ¿¹¸¦ µé¾î ½º¸¶Æ® »ý»ê ¶óÀο¡¼­ ¿§Áö ºÐ¼®À» Å©°Ô Ȱ¿ëÇÏ¿© Á¦Á¶ ¿À·ù³ª Æ÷Àå µîÀ» ½Ç½Ã°£À¸·Î ÁöÀûÇÒ ¼ö ÀÖÀ¸¸ç, IoT´Â ½Ç½Ã°£À¸·Î ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â ¼ö¸¹Àº ÀåÄ¡¿Í ¼¾¼­¸¦ ¿¬°áÇÕ´Ï´Ù. ÀÌ ±â¼úÀ» Àû¿ëÇϸé ÀÌ µ¥ÀÌÅ͸¦ ¿§Áö¿¡¼­ ó¸® ¹× ºÐ¼®ÇÏ¿© ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϰí, ¸ðµç µ¥ÀÌÅ͸¦ Áß¾Ó¿¡ Àü¼ÛÇÒ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ½º¸¶Æ®½ÃƼ¿¡¼­´Â ±³Åë ÆÐÅÏ, ¿¡³ÊÁö ¼Òºñ·®, Ä¡¾ÈÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿§Áö¿¡¼­ÀÇ ¼¾¼­ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ ÀáÀçÀûÀÎ °íÀåÀ» ½Äº°Çϰí, À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­Çϸç, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç½Ã°£ ȯÀÚ ¸ð´ÏÅ͸µ, ¿ø°Ý Áø´Ü, °³ÀÎ ¸ÂÃãÇü Ä¡·á¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÇコÄÉ¾î ºÐ¾ß¿¡¼­µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿§Áö µð¹ÙÀ̽º´Â Ȱ·Â ¡ÈÄ, º´·Â µî ȯÀÚ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÀÇ·á Àü¹®°¡¿¡°Ô Àû½Ã¿¡ ÀλçÀÌÆ®·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷ü´Â ¿§Áö µð¹ÙÀ̽º¸¦ ½Ç½Ã°£ Àç°í °ü¸®, °í°´ ºÐ¼®, °³ÀÎÈ­µÈ ¼îÇÎ °æÇè¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿§Áö µð¹ÙÀ̽º¸¦ ÅëÇØ POS µ¥ÀÌÅÍ, ÅëÇà ÆÐÅÏ, °í°´ ¼±È£µµ¸¦ ºÐ¼®ÇÔÀ¸·Î½á ¼Ò¸Å¾÷ü´Â Àç°í ¼öÁØÀ» ÃÖÀûÈ­Çϰí, °í°´ ¸¸Á·µµ¸¦ ³ôÀ̸ç, Ÿ°ÙÆÃµÈ ÇÁ·Î¸ð¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºÏ¹Ì´Â ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ ´õ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ¿¹Ãø ºÐ¼®ÀÇ Á߿伺°ú »ê¾÷ ¹× Åë½Å »ê¾÷ÀÌ ÁýÁߵǾî ÀÖ¾î ¿§Áö ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, IoT ±â±âÀÇ ¿¬°áÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¸ðµç »ê¾÷±º¿¡¼­ ¿§Áö ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ Ã¤Å÷üÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½º¸¦ µµÀÔÇϸé ÀåºñÀÇ »óÅÂ¿Í »ý»ê ¼Óµµ¸¦ ´õ Àß ÆÄ¾ÇÇÒ ¼ö ÀÖ°í, Á¦Á¶ °øÀåÀÌ »ý»êÀÇ ¸¶Áö¸· ¼ø°£¿¡ ¹ß»ýÇÒ ¼ö ÀÖ´Â ¹®Á¦¿¡ ´ëóÇÒ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ Áö¿ª »ê¾÷¿¡¼­ ÀáÀçÀûÀÎ ÀÌÁ¡À» ÀνÄÇÏ°í Æ¯Á¤ ÀÌ¿ë »ç·Ê¿¡ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¦Á¶ »ê¾÷¿¡¼­´Â ¿¹Áöº¸Àü ¹× ǰÁú °ü¸®¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷º° Ȱ¿ë »ç·Ê´Â ÀÌ Áö¿ªÀÇ ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ÀÏ¹Ý µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤(GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)) ¹× ͏®Æ÷´Ï¾Æ ¼ÒºñÀÚ °³ÀÎÁ¤º¸ º¸È£¹ý(CCPA)°ú °°Àº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹ý±Ô ¹× ÄÄÇöóÀ̾𽺠¿ä°Ç°ú °°Àº ƯÁ¤ ±ÔÁ¦ ¹× Ç¥ÁØÀÌ ÀÖ½À´Ï´Ù. ¿§Áö ¾Ö³Î¸®Æ½½º´Â ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÔÀ¸·Î½á µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ÇØ°áÇÏ°í ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

¿§Áö ¾Ö³Î¸®Æ½½º´Â ºÐ¼®ÀÌ ¼öÇàµÇ´Â À§Ä¡¸¦ Á¦¿ÜÇϰí´Â ±âÁ¸ ºÐ¼® µµ±¸¿Í µ¿ÀÏÇÑ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. Áß¿äÇÑ Â÷ÀÌÁ¡Àº ¿§Áö ¾Ö³Î¸®Æ½½º ÇÁ·Î±×·¡¸Ó´Â ½ºÅ丮Áö, ÄÄÇ»ÆÃ ¼º´É, ¿¬°á¿¡ Á¦ÇÑÀÌ ÀÖÀ» ¼ö ÀÖ´Â ¿§Áö µð¹ÙÀ̽º¿¡¼­ ½ÇÇàÇØ¾ß ÇÑ´Ù´Â Á¡ÀÔ´Ï´Ù. µðÁöÅÐÈ­´Â ÃÖ±Ù Çõ¸íÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ¿À·§µ¿¾È IoT¿¡ ¿¬°áµÈ ±â±âµéÀÌ ¸ÅÀÏ »ý¼ºÇÏ´Â ¼ö¹é¸¸ °³ÀÇ ³ëµå¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍ¿¡¼­ °ü·Ã ÀλçÀÌÆ®¸¦ ÃßÃâÇÏ´Â ¹æ¹ýÀ» °í¹ÎÇØ ¿Ô½À´Ï´Ù. ½º¸¶Æ® ¿öÄ¡¿¡¼­ ½º¸¶Æ® ½ºÇÇÄ¿¿¡ À̸£±â±îÁö ¿¬°áµÈ ±â±âÀÇ ¼ö°¡ Áõ°¡ÇÔ¿¡ µû¶ó ä±¼ÇØ¾ß ÇÒ µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI¿Í ºòµ¥ÀÌÅ͸¦ ºñ·ÔÇÑ ¸¹Àº ½Å±â¼úÀÌ ÀλçÀÌÆ®·Â ¼öÁý¿¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ºÏ¹Ì¿¡¼­´Â ¿¹Ãø ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå Á¡À¯À²ÀÌ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, »ê¾÷ ¹× Åë½Å ¾÷°è¿¡¼­ ¿§Áö ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸¹Àº ±â¾÷µé¿¡°Ô ´Ù¾çÇÑ IoT ¼Ò½º·ÎºÎÅÍ ½ºÆ®¸®¹ÖµÇ´Â µ¥ÀÌÅÍ´Â °ü¸®Çϱ⠾î·Á¿î °Å´ëÇÑ µ¥ÀÌÅÍ ÀúÀå¼Ò¸¦ »ý¼ºÇÕ´Ï´Ù.

¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå º¸°í¼­ ÇÏÀ̶óÀÌÆ®

  • Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿¡¼­ »ý¼ºµÇ´Â ´ë·®ÀÇ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ÇØ¼®ÇØ¾ß ÇÒ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, ¼­¼úÀû ºÐ¼® ºÎ¹®ÀÌ 2024³â 37% ÀÌ»óÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÏ¸ç ½ÃÀåÀ» Àå¾ÇÇß½À´Ï´Ù.
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ ºÐ¾ß´Â ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¿¹Áöº¸Àü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î 2024³â °¡Àå Å« ¸ÅÃâ ºñÁßÀ» Â÷ÁöÇß½À´Ï´Ù.
  • ¼Ö·ç¼Ç ¹× ÄÄÆ÷³ÍÆ® ºÎ¹®Àº ¾÷°è Àü¹ÝÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ÀÇ»ç °áÁ¤¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î 2024³â °¡Àå Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù.
  • ºÏ¹Ì ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀåÀº 2024³â 32% ÀÌ»óÀÇ °¡Àå Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, ÀÌ´Â ÁÖ·Î ÀÌ Áö¿ªÀÇ Ã·´Ü µðÁöÅÐ ÀÎÇÁ¶ó¿Í ¿¡³ÊÁö, Á¦Á¶, °ø°ø ºÎ¹®¿¡¼­ÀÇ °­·ÂÇÑ Á¸Àç°¨¿¡ ±âÀÎÇÑ °ÍÀ¸·Î ºÐ¼®µË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§

  • ½ÃÀå °èÅë Àü¸Á
  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ºÐ¼®
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
    • µµÀÔ °úÁ¦
  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå ºÐ¼® Åø
    • Àü°³ ºÐ¼®-Porter
    • PESTEL ºÐ¼®

Á¦4Àå ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : À¯Çüº° ÃßÁ¤, µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : À¯Çüº° º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
  • ±â¼úÀû ºÐ¼®
  • Áø´Ü ºÐ¼®
  • ¿¹Ãø ºÐ¼®
  • ó¹æÀû ºÐ¼®

Á¦5Àå ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : ÄÄÆ÷³ÍÆ®º° ÃßÁ¤, µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : ÄÄÆ÷³ÍÆ®º° º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦6Àå ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : Àü°³ ¸ðµ¨º° ÃßÁ¤, µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : Àü°³ ¸ðµ¨º° º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
  • On-Premise
  • Ŭ¶ó¿ìµå

Á¦7Àå ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : ¿ëµµº° ÃßÁ¤, µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : ¿ëµµº° º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
  • ¸¶ÄÉÆÃ ¹× ¿µ¾÷
  • ¿ÀÆÛ·¹À̼Ç
  • ÆÄÀ̳½½Ì
  • Àλç
  • ±âŸ

Á¦8Àå ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : »ê¾÷º° ÃßÁ¤, µ¿Ç⠺м®

  • ºÎ¹® ´ë½Ãº¸µå
  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : »ê¾÷º° º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
  • IT ¹× Åë½Å
  • ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI)
  • Á¦Á¶¾÷
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • ¼Ò¸Å
  • ¿î¼Û ¹× ¹°·ù
  • Á¤ºÎ
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • ±âŸ

Á¦9Àå Áö¿ª ÃßÁ¤, µ¿Ç⠺м®

  • ¿§Áö ¾Ö³Î¸®Æ½½º ½ÃÀå : Áö¿ªº°, 2024³â ¹× 2030³â
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹

Á¦10Àå °æÀï ±¸µµ

  • ±â¾÷ ºÐ·ù
  • ±â¾÷ÀÇ ½ÃÀå Æ÷Áö¼Å´×
  • ±â¾÷ È÷Æ®¸Ê ºÐ¼®
  • ±â¾÷ °³¿ä/»óÀå±â¾÷
    • Amazon Web Services Inc.
    • Cisco Systems Inc.
    • IBM Corporation
    • Intel Corporation
    • Hewlett Packard Enterprise Development LP
    • Dell Inc.
    • EdgeConneX Inc.
    • SAP SE
    • Oracle
    • Databricks
LSH 25.06.27

Edge Analytics Market Growth & Trends:

The global edge analytics market size is estimated to reach USD 40.71 billion by 2030, registering a CAGR of 28.6% from 2025 to 2030, according to a new report by Grand View Research, Inc. Performing data analysis and processing on the edge devices themselves, robots can quickly respond to their environment without relying heavily on a centralized system. This approach offers real-time insights, reduced latency, improved security, and optimized bandwidth. With the rise of the Internet of Things and the increasing amount of data generated at the edge, edge analytics has gained significant attention. Many industrial organizations use the Internet of Things (IoT) to monitor manufacturing machinery, pipelines, and equipment.

IoT generates and stores data that might be challenging to manage and interpret in real time. The data from IoT devices is delivered into edge analytics to be processed and understood. Analytics algorithms assist humans in determining which data is required and which is unnecessary. In many applications and industries, timely decisions are crucial for achieving operational efficiency, ensuring safety, and delivering superior customer experiences. Certain applications, such as autonomous vehicles, industrial automation, and smart cities, demand real-time analytics capabilities.

Edge analytics enable immediate processing and decision-making at the edge, minimizing latency and enabling rapid responses. Moreover, industries such as drones and robotics heavily rely on real-time decision-making capabilities. These systems must process vast amounts of sensor data and respond instantaneously to changing environments and situations. Edge analytics enable the analysis and interpretation of sensor data at the edge, allowing these autonomous systems to make quick and accurate decisions without relying on centralized processing.

The increasingly vast amount of data from connected devices around the globe is driving market expansion, real-time intelligence acting as a catalyst for the growth of edge analytics on network devices and adopting edge analytics, enhancing scalability and cost optimization. Analytical computing is performed at the device's edge rather than waiting for data to be retrieved back at a centralized storage system and then imply analytical application. Furthermore, the manufacturing industry may make substantial use of edge analytics, for example, in smart production lines, pointing out manufacturing errors, packing, and so on in real-time. The IoT connects numerous devices and sensors that generate massive volumes of data in real-time; by applying the technology, this data can be processed and analyzed at the edge, enabling rapid decision-making and reducing the need to transmit all data to a central location. For example, in smart cities, it can help monitor and manage traffic patterns, energy consumption, and public safety in real-time.

In the manufacturing sector, it enables real-time monitoring and predictive maintenance of machines and equipment; by analyzing sensor data at the edge, manufacturers can identify potential failures, optimize maintenance schedules, and minimize downtime. It also plays a crucial role in healthcare by enabling real-time patient monitoring, remote diagnostics, and personalized treatment. Edge devices can analyze patient data, including vital signs and medical history, to provide timely insights for healthcare professionals. Retailers can leverage it for real-time inventory management, customer analytics, and personalized shopping experiences; by analyzing point-of-sale data, foot traffic patterns, and customer preferences at the edge, retailers can optimize inventory levels, enhance customer satisfaction, and offer targeted promotions.

North America will attain a larger market share in the edge analytics market; predictive analytics have importance in the region and will increase the adoption of edge analytics solutions with a higher concentration of industrial and telecommunication industries. With the rising connection of IoT devices, the regional market has seen a surge in the adoption rate of edge analytics solutions across all verticals. Implementation of edge analytics to keep better track of the health of equipment and output rate and prepare the manufacturing plant to deal with any last-minute problems in production.

Various regional industries have identified the potential benefits and implemented them in specific use cases. For example, it is used in manufacturing for predictive maintenance and quality control. These industry-specific applications have contributed to the growth of the edge analytics market in the region. The region has specific regulations and standards such as data privacy laws and compliance requirements like the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). It provides a solution to address data security and privacy concerns by processing sensitive data locally, thereby complying with regulatory requirements.

Edge Analytics provides the same capability as a traditional analytics tool, with the exception of where the analytics are conducted. The key distinction is that edge analytics programmers must run on edge devices that may be limited in storage, computing power, or connection. Digitization has been the driving force behind the most recent revolutions. Companies have long struggled with how to extract relevant insights from the millions of nodes of data created each day by IoT-connected devices. The amount of linked gadgets, from a smartwatch to a smart speaker, is increasing the volume of data to be mined. Many new technologies, like as AI and Big Data, have become indispensable for gathering insights.

North America will gain a larger market share in the edge analytics market due to an increase in the need for predictive analytics, which will increase the adoption of edge analytics solutions with a higher concentration of industrial and telecommunications industries. With the rise of IoT, there has been a surge in interest in edge analytics. For many firms, streaming data from different IoT sources produces a massive data repository that is challenging to manage.

Edge Analytics Market Report Highlights:

  • The descriptive analytics segment dominated the market with a revenue share of over 37% in 2024, owing to the increasing need to interpret large volumes of real-time data generated by connected devices.
  • The energy and utility segment accounted for the largest revenue share in 2024, driven by growing demand for real-time monitoring and predictive maintenance.
  • The solutions components segment accounted for the largest revenue share in 2024, driven by the growing need for real-time data processing and decision-making across industries.
  • North America edge analytics market accounted for the largest revenue share of over 32% in 2024, primarily driven by the region's advanced digital infrastructure and the strong presence of energy, manufacturing, and utility sectors.

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation and Scope
  • 1.2. Market Definitions
    • 1.2.1. Information analysis
    • 1.2.2. Market formulation & data visualization
    • 1.2.3. Data validation & publishing
  • 1.3. Research Scope and Assumptions
    • 1.3.1. List of Data Sources

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
  • 2.3. Competitive Insights

Chapter 3. Edge Analytics Market Variables, Trends, & Scope

  • 3.1. Market Lineage Outlook
  • 3.2. Market Dynamics
    • 3.2.1. Market Driver Analysis
    • 3.2.2. Market Restraint Analysis
    • 3.2.3. Deployment Challenge
  • 3.3. Edge Analytics Market Analysis Tools
    • 3.3.1. Deployment Analysis - Porter's
      • 3.3.1.1. Bargaining power of the suppliers
      • 3.3.1.2. Bargaining power of the buyers
      • 3.3.1.3. Threats of substitution
      • 3.3.1.4. Threats from new entrants
      • 3.3.1.5. Competitive rivalry
    • 3.3.2. PESTEL Analysis
      • 3.3.2.1. Political landscape
      • 3.3.2.2. Economic landscape
      • 3.3.2.3. Social landscape
      • 3.3.2.4. Technological landscape
      • 3.3.2.5. Environmental landscape
      • 3.3.2.6. Legal landscape

Chapter 4. Edge Analytics Market: Type Estimates & Trend Analysis

  • 4.1. Segment Dashboard
  • 4.2. Edge Analytics Market: Type Movement Analysis, 2024 & 2030 (USD Million)
  • 4.3. Descriptive Analytics
    • 4.3.1. Descriptive Analytics Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 4.4. Diagnostic Analytics
    • 4.4.1. Diagnostic Analytics Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 4.5. Predictive Analytics
    • 4.5.1. Predictive Analytics Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 4.6. Prescriptive Analytics
    • 4.6.1. Prescriptive Analytics Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)

Chapter 5. Edge Analytics Market: Component Estimates & Trend Analysis

  • 5.1. Segment Dashboard
  • 5.2. Edge Analytics Market: Component Movement Analysis, 2024 & 2030 (USD Million)
  • 5.3. Solution
    • 5.3.1. Solution Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 5.4. Service
    • 5.4.1. Service Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)

Chapter 6. Edge Analytics Market: Deployment Model Estimates & Trend Analysis

  • 6.1. Segment Dashboard
  • 6.2. Edge Analytics Market: Deployment Model Movement Analysis, 2024 & 2030 (USD Million)
  • 6.3. On-Premises
    • 6.3.1. On-Premises Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 6.4. On-Cloud
    • 6.4.1. On-Cloud Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)

Chapter 7. Edge Analytics Market: Application Estimates & Trend Analysis

  • 7.1. Segment Dashboard
  • 7.2. Edge Analytics Market: Application Movement Analysis, 2024 & 2030 (USD Million)
  • 7.3. Marketing & Sales
    • 7.3.1. Marketing & Sales Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 7.4. Operations
    • 7.4.1. Operations Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 7.5. Finance
    • 7.5.1. Finance Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 7.6. Human Resources
    • 7.6.1. Human Resources Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 7.7. Others
    • 7.7.1. Others Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)

Chapter 8. Edge Analytics Market: Industry Estimates & Trend Analysis

  • 8.1. Segment Dashboard
  • 8.2. Edge Analytics Market: Industry Movement Analysis, 2024 & 2030 (USD Million)
  • 8.3. IT & Telecom
    • 8.3.1. IT & Telecom Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.4. BFSI
    • 8.4.1. BFSI Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.5. Manufacturing
    • 8.5.1. Manufacturing Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.6. Healthcare and Life Science
    • 8.6.1. Healthcare and Life Science Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.7. Retail
    • 8.7.1. Retail Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.8. Transportation and Logistics
    • 8.8.1. Transportation and Logistics Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.9. Government
    • 8.9.1. Government Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.10. Energy and Utilities
    • 8.10.1. Energy and Utilities Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 8.11. Others
    • 8.11.1. Others Market Revenue Estimates and Forecasts, 2018 - 2030 (USD Million)

Chapter 9. Regional Estimates & Trend Analysis

  • 9.1. Edge Analytics Market by Region, 2024 & 2030
  • 9.2. North America
    • 9.2.1. North America Edge Analytics Market Estimates & Forecasts, 2018 - 2030 (USD Million)
    • 9.2.2. U.S.
      • 9.2.2.1. Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.2.3. Canada
      • 9.2.3.1. Canada Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 9.3. Europe
    • 9.3.1. Europe Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.3.2. UK
      • 9.3.2.1. UK Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.3.3. Germany
      • 9.3.3.1. Germany Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.3.4. France
      • 9.3.4.1. France Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.3.5. Italy
      • 9.3.5.1. Italy Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 9.4. Asia Pacific
    • 9.4.1. Asia Pacific Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.4.2. China
      • 9.4.2.1. China Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.4.3. Japan
      • 9.4.3.1. Japan Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.4.4. India
      • 9.4.4.1. India Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.4.5. South Korea
      • 9.4.5.1. South Korea Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 9.5. Latin America
    • 9.5.1. Latin America Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.5.2. Brazil
      • 9.5.2.1. Brazil Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.5.3. Mexico
      • 9.5.3.1. Mexico Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
  • 9.6. Middle East and Africa
    • 9.6.1. Middle East and Africa Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.6.2. UAE
      • 9.6.2.1. UAE Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.6.3. Saudi Arabia
      • 9.6.3.1. Saudi Arabia Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)
    • 9.6.4. South Africa
      • 9.6.4.1. South Africa Edge Analytics Market Estimates and Forecasts, 2018 - 2030 (USD Million)

Chapter 10. Competitive Landscape

  • 10.1. Company Categorization
  • 10.2. Company Market Positioning
  • 10.3. Company Heat Map Analysis
  • 10.4. Company Profiles/Listing
    • 10.4.1. Amazon Web Services Inc.
      • 10.4.1.1. Participant's Overview
      • 10.4.1.2. Financial Performance
      • 10.4.1.3. Service Benchmarking
      • 10.4.1.4. Strategic Initiatives
    • 10.4.2. Cisco Systems Inc.
      • 10.4.2.1. Participant's Overview
      • 10.4.2.2. Financial Performance
      • 10.4.2.3. Service Benchmarking
      • 10.4.2.4. Strategic Initiatives
    • 10.4.3. IBM Corporation
      • 10.4.3.1. Participant's Overview
      • 10.4.3.2. Financial Performance
      • 10.4.3.3. Service Benchmarking
      • 10.4.3.4. Strategic Initiatives
    • 10.4.4. Intel Corporation
      • 10.4.4.1. Participant's Overview
      • 10.4.4.2. Financial Performance
      • 10.4.4.3. Service Benchmarking
      • 10.4.4.4. Strategic Initiatives
    • 10.4.5. Hewlett Packard Enterprise Development LP
      • 10.4.5.1. Participant's Overview
      • 10.4.5.2. Financial Performance
      • 10.4.5.3. Service Benchmarking
      • 10.4.5.4. Strategic Initiatives
    • 10.4.6. Dell Inc.
      • 10.4.6.1. Participant's Overview
      • 10.4.6.2. Financial Performance
      • 10.4.6.3. Service Benchmarking
      • 10.4.6.4. Strategic Initiatives
    • 10.4.7. EdgeConneX Inc.
      • 10.4.7.1. Participant's Overview
      • 10.4.7.2. Financial Performance
      • 10.4.7.3. Service Benchmarking
      • 10.4.7.4. Strategic Initiatives
    • 10.4.8. SAP SE
      • 10.4.8.1. Participant's Overview
      • 10.4.8.2. Financial Performance
      • 10.4.8.3. Service Benchmarking
      • 10.4.8.4. Strategic Initiatives
    • 10.4.9. Oracle
      • 10.4.9.1. Participant's Overview
      • 10.4.9.2. Financial Performance
      • 10.4.9.3. Service Benchmarking
      • 10.4.9.4. Strategic Initiatives
    • 10.4.10. Databricks
      • 10.4.10.1. Participant's Overview
      • 10.4.10.2. Financial Performance
      • 10.4.10.3. Service Benchmarking
      • 10.4.10.4. Strategic Initiatives
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦