시장보고서
상품코드
1842362

세계의 의료 지불자용 인공지능(AI) 시장 : 시장 규모, 점유율 및 동향 분석(컴포넌트별, 전개 방식별, 용도별, 기술별, 지역별), 부문별 예측(2025-2033년)

Artificial Intelligence For Healthcare Payer Market Size, Share & Trends Analysis Report By Component (Software, Services), By Deployment, By Application, By Technology, By Region, And Segment Forecasts, 2025 - 2033

발행일: | 리서치사: Grand View Research | 페이지 정보: 영문 120 Pages | 배송안내 : 2-10일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

의료 지불자용 인공지능 : 시장 개요

인공지능은 관리 업무 자동화, 운영 비용 절감, 청구 처리 정도 향상에 도움이 되어, 전체적인 효율을 향상시킵니다.

또한, 의료 데이터가 증가함에 따라 AI가 제공할 수 있는 고급 분석이 필요하며, 환자 치료와 결과에 대한 더 깊은 통찰력을 얻을 수 있습니다. 또한, 규제 변화와 가치 기반 치료 모델에 대한 관심이 높아지면서 지불자가 인공지능을 도입하여 환자 참여와 만족도를 높이고 위험을 보다 효과적으로 관리할 수 있도록 유도하고 있습니다.

머신러닝과 자연어 처리의 발전으로 인공지능 시스템은 복잡한 의료 데이터를 더 잘 이해하고 분석할 수 있게 되어 더 많은 정보에 입각한 의사결정을 내릴 수 있게 되었습니다. 인공지능 기술의 끊임없는 기술 혁신은 AI 기업과 의료 지불자와의 전략적 파트너십과 함께 시장 확대에 중요한 역할을 하고 있습니다. 예를 들어, 2024년 4월 Pager, Inc.는 구글 클라우드의 고급 생성형 AI(GenAI) 기능을 활용한 세 가지 새로운 애플리케이션 개발을 발표했습니다. 이러한 GenAI 용도는 다직종으로 구성된 케어 팀의 관리 부담을 줄이고, 회원들에게 보다 개인화된 대화 경험을 제공함으로써 케어의 4가지 목적을 지원하는 것을 목표로 합니다. 이러한 강화된 상호 작용은 회원들이 의료 여정을 탐색하고, 조정하고, 최선의 다음 단계를 밟을 수 있도록 돕습니다.

또한, 의료비 청구에 있어서의 부정행위는 지불자에게 심각한 문제이며, 막대한 재정적 손실을 초래할 수 있습니다. 인공지능과 머신러닝 알고리즘은 부정행위를 나타내는 비정상적인 패턴을 감지하는 데 탁월합니다. 이러한 기술은 과거 청구 데이터를 분석하여 의심스러운 행위를 실시간으로 식별하고, 신속한 조사와 경감을 가능하게 합니다. 부정행위를 줄임으로써 의료 지불자는 재원을 보호하고, 자금이 진정한 청구에 적절히 배분되도록 하여 의료 시스템의 무결성을 유지할 수 있습니다.

서비스당 비용(Fee for Service)에서 가치 기반 의료 모델로의 전환으로 환자 결과와 비용 효율성이 더욱 중요하게 여겨지고 있습니다. 인공지능은 의료 지불자가 환자 데이터를 분석하고 치료 개입의 효과를 측정할 수 있게 함으로써 이러한 전환에서 매우 중요한 역할을 하고 있습니다. 예측 분석은 예방적 치료와 조기 개입의 혜택을 가장 많이 받을 수 있는 환자를 식별하여 병원 재입원을 줄이고 장기적인 건강 결과를 개선하는 데 도움이 됩니다. 인공지능은 가치 기반 케어 이니셔티브를 지원함으로써 지불자가 업계 트렌드에 발맞추어 회원들에게 더 나은 가치를 제공할 수 있도록 돕습니다. 예를 들어, 2025년 1월, 이노베이서는 보험계리 소프트웨어 및 분석 회사인 Humbi AI를 인수하여 고급 보험계리 기능을 갖춘 의료용 인텔리전스 클라우드를 강화했습니다. 이러한 움직임은 계약 성능 향상, 지불자 벤치마크 개선, 공급자 네트워크 관리 최적화 등 큰 이점을 가져다주었습니다. 이러한 요인들이 결합되어 의료 지불자 시장에서 인공지능의 빠른 성장에 기여하고, 효율성 향상, 비용 절감, 환자 치료 강화에 도움이 될 것으로 기대됩니다.

목차

제1장 분석 방법, 범위

제2장 주요 요약

제3장 의료 지불자용 인공지능(AI) 시장 : 변동 요인, 동향 및 범위

  • 시장 연관 전망
    • 상위 시장 전망
    • 관련/부수 시장 전망
  • 시장 역학
    • 시장 성장 촉진요인 분석
    • 시장 성장 억제요인 분석
    • 시장 기회 분석
    • 시장이 해결해야 할 과제 분석
  • 의료 지불자용 인공지능(AI) 시장 : 분석 툴
    • 업계 분석 : Porter의 Five Forces 분석
    • PESTEL 분석
  • 사례 연구
  • 기술 개요

제4장 의료 지불자용 인공지능(AI) 시장 : 컴포넌트별 추정, 동향 분석

  • 정의와 범위
  • 부문 대시보드
  • 의료 지불자용 인공지능(AI) 시장 : 변동 분석, 컴포넌트별
  • 의료 지불자용 인공지능(AI) 시장 규모와 동향 분석 : 컴포넌트별(2021-2033년)
    • 소프트웨어
    • 서비스

제5장 의료 지불자용 인공지능(AI) 시장 : 전개 방식별 추정, 동향 분석

  • 정의와 범위
  • 부문 대시보드
  • 의료 지불자용 인공지능(AI) 시장 : 변동 분석, 전개 방식별
  • 의료 지불자용 인공지능(AI) 시장 규모와 동향 분석 : 전개 방식별(2021-2033년)
    • 클라우드
    • On-Premise

제6장 의료 지불자용 인공지능(AI) 시장 : 기술별 추정, 동향 분석

  • 정의와 범위
  • 부문 대시보드
  • 의료 지불자용 인공지능(AI) 시장 : 변동 분석, 기술별
  • 의료 지불자용 인공지능(AI) 시장 규모와 동향 분석 : 기술별(2021-2033년)
    • 머신러닝(ML)
    • 자연언어처리(NLP)
    • 로봇 프로세스 자동화(RPA)
    • 예측 분석
    • 생성형 AI

제7장 의료 지불자용 인공지능(AI) 시장 : 용도별 추정, 동향 분석

  • 정의와 범위
  • 부문 대시보드
  • 의료 지불자용 인공지능(AI) 시장 : 변동 분석, 용도별
  • 의료 지불자용 인공지능(AI) 시장 규모와 동향 분석 : 용도별(2021-2033년)
    • 청구 처리 최적화
    • 부정행위 감지 및 방지
    • 매출 관리 및 청구
    • 회원 관여 및 퍼스널라이제이션
    • 리스크 조정 및 예측 분석
    • 관리 워크플로우 자동화
    • 기타

제8장 의료 지불자용 인공지능(AI) 시장 : 지역별 추정, 동향 분석(컴포넌트별, 전개 방식별, 용도별)

  • 지역 대시보드 : 지역별
  • 세계 시장 스냅숏 : 지역별
  • 시장 규모 예측과 동향 분석(2021-2033년)
  • 북미
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 영국
    • 독일
    • 프랑스
    • 이탈리아
    • 스페인
    • 노르웨이
    • 스웨덴
    • 덴마크
  • 아시아태평양
    • 일본
    • 중국
    • 인도
    • 호주
    • 한국
    • 태국
  • 라틴아메리카
    • 브라질
    • 아르헨티나
  • 중동 및 아프리카
    • 남아프리카공화국
    • 사우디아라비아
    • 아랍에미리트(UAE)
    • 쿠웨이트

제9장 경쟁 구도

  • 기업/경쟁 분류
  • 전략 매핑
  • 기업 시장 현황 분석(2024년)
  • 기업 개요/상장기업
    • Nuance Communications(Microsoft)
    • AiRo Digital Labs
    • 재무 실적
    • Accenture
    • Cognizant
    • Codoxo
    • CareCloud, Inc.
    • Hexaware Technologies Limited
    • Oracle
    • MST Solutions, LLC
    • Innovaccer, Inc.
    • Amelia US LLC
    • R1 RCM Inc
LSH 25.11.14

Artificial Intelligence For Healthcare Payer Market Summary

Artificial intelligence helps in automating administrative tasks, reducing operational costs, and enhancing the accuracy of claims processing, thereby improving overall efficiency. In addition, the growing volume of healthcare data necessitates advanced analytics, which AI can provide, offering deeper insights into patient care and outcomes. Moreover, regulatory changes and the increasing focus on value-based care models push payers to adopt artificial intelligence to improve patient engagement and satisfaction while managing risks more effectively.

Advancements in machine learning and natural language processing enable artificial intelligence systems to understand better and analyze complex medical data, leading to more informed decision-making. The continuous innovation in artificial intelligence technologies, along with the strategic partnerships between AI companies and healthcare payers, also plays a crucial role in market expansion. For instance, in April 2024, Pager, Inc., announced the development of three new applications utilizing Google Cloud's advanced generative AI (GenAI) capabilities. These GenAI applications aim to support the fourfold aim of care by alleviating the administrative burden on multidisciplinary care teams and fostering a more personalized and conversational experience for members. This enhanced interaction aids members in navigating, coordinating, and taking the next best steps in their healthcare journey.

Furthermore, fraudulent activities in healthcare claims are a significant concern for payers, leading to substantial financial losses. Artificial intelligence and machine learning algorithms excel in detecting anomalous patterns indicative of fraud. These technologies analyze historical claims data to identify suspicious activities in real time, allowing for prompt investigation and mitigation. By reducing fraud, healthcare payers are able to safeguard their financial resources and ensure that funds are appropriately allocated to genuine claims, thereby maintaining the integrity of the healthcare system.

The shift from fee-for-service to value-based care models places a greater emphasis on patient outcomes and cost efficiency. Artificial intelligence plays a pivotal role in this transition by enabling healthcare payers to analyze patient data and measure the effectiveness of care interventions. Predictive analytics help identify patients who would benefit most from preventive care and early interventions, thereby reducing hospital readmissions and improving long-term health outcomes. By supporting value-based care initiatives, artificial intelligence helps payers align with industry trends and deliver better value to members. For instance, in January 2025, Innovaccer acquired Humbi AI, an actuarial software and analytics firm, to enhance its Healthcare Intelligence Cloud with advanced actuarial capabilities. This move brought significant benefits, including enhanced contract performance, improved payer benchmarking, and optimized provider network management. These factors collectively contribute to the rapid growth of artificial intelligence in the healthcare payer market, promising improved efficiency, reduced costs, and enhanced patient care.

Global Artificial Intelligence (AI) for Healthcare Payer Market Report Segmentation

This report forecasts revenue growth at global, regional, and country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2021 to 2033. For this study, Grand View Research has segmented the global artificial intelligence (AI) for healthcare payer market report based on the component, deployment, technology, application, and region.

  • Component Outlook (Revenue, USD Million, 2021 - 2033)
  • Software
  • Services
  • Deployment Outlook (Revenue, USD Million, 2021 - 2033)
  • Cloud
  • On-Premises
  • Technology Outlook (Revenue, USD Million, 2021 - 2033)
  • Machine Learning (ML)
  • Natural Language Processing (NLP)
  • Robotic Process Automation (RPA)
  • Predictive Analytics
  • Generative AI
  • Application Outlook (Revenue, USD Million, 2021 - 2033)
  • Claims Processing Optimization
  • Fraud Detection and Prevention
  • Revenue Management and Billing
  • Member Engagement and Personalization
  • Risk Adjustment & Predictive Analytics
  • Administrative Workflow Automation
  • Others
  • Regional Outlook (Revenue, USD Million, 2021 - 2033)
  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • UK
    • Germany
    • France
    • Italy
    • Spain
    • Norway
    • Sweden
    • Denmark
  • Asia Pacific
    • Japan
    • China
    • India
    • Thailand
    • Australia
    • South Korea
  • Latin America
    • Brazil
    • Argentina
  • Middle East and Africa
    • Saudi Arabia
    • South Africa
    • UAE
    • Kuwait

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation & Scope
  • 1.2. Research Methodology
  • 1.3. Information Procurement
    • 1.3.1. Purchased database
    • 1.3.2. GVR's internal database
    • 1.3.3. Secondary sources
    • 1.3.4. Primary research
  • 1.4. Information or Data Analysis
    • 1.4.1. Data analysis models
  • 1.5. Market Formulation & Data Validation
  • 1.6. Model Details
    • 1.6.1. Commodity flow analysis (Model 1)
    • 1.6.2. Approach 1: Commodity flow approach
  • 1.7. List of Secondary Sources
  • 1.8. List of Primary Sources
  • 1.9. Objectives

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
    • 2.2.1. Component outlook
    • 2.2.2. Deployment outlook
    • 2.2.3. Technology outlook
    • 2.2.4. Application outlook
    • 2.2.5. Regional outlook
  • 2.3. Competitive Insights

Chapter 3. Artificial Intelligence (AI) for Healthcare Payer Market Variables, Trends & Scope

  • 3.1. Market Lineage Outlook
    • 3.1.1. Parent market outlook
    • 3.1.2. Related/ancillary market outlook
  • 3.2. Market Dynamics
    • 3.2.1. Market driver analysis
    • 3.2.2. Market restraint analysis
    • 3.2.3. Market opportunity analysis
    • 3.2.4. Market challenges analysis
  • 3.3. Artificial Intelligence (AI) for Healthcare Payer Market Analysis Tools
    • 3.3.1. Industry Analysis - Porter's
      • 3.3.1.1. Supplier power
      • 3.3.1.2. Buyer power
      • 3.3.1.3. Substitution threat
      • 3.3.1.4. Threat of new entrant
      • 3.3.1.5. Competitive rivalry
    • 3.3.2. PESTEL Analysis
      • 3.3.2.1. Political landscape
      • 3.3.2.2. Technological landscape
      • 3.3.2.3. Economic landscape
      • 3.3.2.4. Social landscape
      • 3.3.2.5. Legal landscape
  • 3.4. Case Studies
  • 3.5. Technology Overview

Chapter 4. Artificial Intelligence (AI) for Healthcare Payer Market: Component Estimates & Trend Analysis

  • 4.1. Definitions and Scope
  • 4.1. Segment Dashboard
  • 4.3. Artificial Intelligence (AI) for Healthcare Payer Market Component Movement Analysis
  • 4.4. Artificial Intelligence (AI) for Healthcare Payer Market Size & Trend Analysis, by Component, 2021 to 2033 (USD Million)
    • 4.4.1. Software
      • 4.4.1.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 4.4.2. Services
      • 4.4.2.1. Market estimates and forecast, 2021 to 2033 (USD Million)

Chapter 5. Artificial Intelligence (AI) for Healthcare Payer Market: Deployment Estimates & Trend Analysis

  • 5.1. Definitions and Scope
  • 5.2. Segment Dashboard
  • 5.3. Artificial Intelligence (AI) for Healthcare Payer Market Movement Analysis
  • 5.4. Artificial Intelligence (AI) for Healthcare Payer Market Size & Trend Analyses, by Deployment, 2021 to 2033 (USD Million)
    • 5.5.1. Cloud
      • 5.5.1.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 5.5.2. On-Premises
      • 5.5.2.1. Market estimates and forecast, 2021 to 2033 (USD Million)

Chapter 6. Artificial Intelligence (AI) for Healthcare Payer Market: Technology Estimates & Trend Analysis

  • 6.1. Definitions and Scope
  • 6.2. Segment Dashboard
  • 6.3. Artificial Intelligence (AI) for Healthcare Payer Market Technology Movement Analysis
  • 6.4. Artificial Intelligence (AI) for Healthcare Payer Market Size & Trend Analysis, by Technology, 2021 to 2033 (USD Million)
    • 6.4.1. Machine Learning (ML)
      • 6.4.1.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 6.4.2. Natural Language Processing (NLP)
      • 6.4.2.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 6.4.3. Robotic Process Automation (RPA)
      • 6.4.3.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 6.4.4. Predictive Analytics
      • 6.4.4.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 6.4.5. Generative AI
      • 6.4.5.1. Market estimates and forecast, 2021 to 2033 (USD Million)

Chapter 7. Artificial Intelligence (AI) for Healthcare Payer Market: Application Estimates & Trend Analysis

  • 7.1. Definitions and Scope
  • 7.2. Segment Dashboard
  • 7.3. Artificial Intelligence (AI) for Healthcare Payer Market Movement Analysis
  • 7.4. Artificial Intelligence (AI) for Healthcare Payer Market Size & Trend Analyses, by Application, 2021 to 2033 (USD Million)
    • 7.4.1. Claims Processing Optimization
      • 7.4.1.1. Market estimates and forecast, 2021 to 2033, (USD million)
    • 7.4.2. Fraud Detection and Prevention
      • 7.4.2.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 7.4.3. Revenue Management and Billing
      • 7.4.3.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 7.4.4. Member Engagement and Personalization
      • 7.4.4.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 7.4.5. Risk Adjustment & Predictive Analytics
      • 7.4.5.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 7.4.6. Administrative Workflow Automation
      • 7.4.6.1. Market estimates and forecast, 2021 to 2033 (USD Million)
    • 7.4.7. Others
      • 7.4.7.1. Market estimates and forecast, 2021 to 2033, (USD Million

Chapter 8. Artificial Intelligence (AI) for Healthcare Payer Market: Regional Estimates & Trend Analysis by Component, Deployment, & Application

  • 8.1. Regional Market Dashboard
  • 8.2. Global Regional Market Snapshot
  • 8.3. Market Size & Forecasts Trend Analysis, 2021 to 2033
  • 8.4. North America
    • 8.4.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
    • 8.6.2. U.S.
      • 8.4.2.1. U.S. country dynamics
      • 8.4.2.2. Competitive landscape
      • 8.4.2.3. Regulatory framework
      • 8.4.2.4. U.S. market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.4.3. Canada
      • 8.4.3.1. Canada country dynamics
      • 8.4.3.2. Competitive landscape
      • 8.4.3.3. Regulatory framework
      • 8.4.3.4. Canada market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.4.4. Mexico
      • 8.4.4.1. Mexico
      • 8.4.4.2. Competitive landscape
      • 8.4.4.3. Regulatory framework
      • 8.4.4.4. Mexico market estimates and forecast, 2021 - 2033 (USD Million)
  • 8.5. Europe
    • 8.5.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
    • 8.5.2. UK
      • 8.5.2.1. UK country dynamics
      • 8.5.2.2. Competitive landscape
      • 8.5.2.3. Regulatory framework
      • 8.5.2.4. UK market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.3. Germany
      • 8.5.3.1. Germany country dynamics
      • 8.5.3.2. Competitive landscape
      • 8.5.3.3. Regulatory framework
      • 8.5.3.4. Germany market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.4. France
      • 8.5.4.1. France country dynamics
      • 8.5.4.2. Competitive landscape
      • 8.5.4.3. Regulatory framework
      • 8.5.4.4. France market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.5. Italy
      • 8.5.5.1. Italy country dynamics
      • 8.5.5.2. Competitive landscape
      • 8.5.5.3. Regulatory framework
      • 8.5.5.4. Italy market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.6. Spain
      • 8.5.6.1. Spain country dynamics
      • 8.5.6.2. Competitive landscape
      • 8.5.6.3. Regulatory framework
      • 8.5.6.4. Spain market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.7. Norway
      • 8.5.7.1. Norway country dynamics
      • 8.5.7.2. Competitive landscape
      • 8.5.7.3. Regulatory framework
      • 8.5.7.4. Norway market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.8. Sweden
      • 8.5.8.1. Sweden
      • 8.5.8.2. Competitive landscape
      • 8.5.8.3. Regulatory framework
      • 8.5.8.4. Sweden market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.5.9. Denmark
      • 8.5.9.1. Denmark
      • 8.5.9.2. Competitive landscape
      • 8.5.9.3. Regulatory framework
      • 8.5.9.4. Denmark market estimates and forecast, 2021 - 2033 (USD Million)
  • 8.6. Asia Pacific
    • 8.6.1. Market estimates and forecasts 2021 to 2033 (USD Million)
    • 8.6.2. Japan
      • 8.6.2.1. Japan country dynamics
      • 8.6.2.2. Competitive landscape
      • 8.6.2.3. Regulatory framework
      • 8.6.2.4. Japan market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.6.3. China
      • 8.6.3.1. China country dynamics
      • 8.6.3.2. Competitive landscape
      • 8.6.3.3. Regulatory framework
      • 8.6.3.4. China market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.6.4. India
      • 8.6.4.1. India country dynamics
      • 8.6.4.2. Competitive landscape
      • 8.6.4.3. Regulatory framework
      • 8.6.4.4. India market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.6.5. Australia
      • 8.6.5.1. Australia country dynamics
      • 8.6.5.2. Competitive landscape
      • 8.6.5.3. Regulatory framework
      • 8.6.5.4. Australia market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.6.6. South Korea
      • 8.6.6.1. South Korea
      • 8.6.6.2. Competitive landscape
      • 8.6.6.3. Regulatory framework
      • 8.6.6.4. South Korea market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.6.7. Thailand
      • 8.6.7.1. Thailand
      • 8.6.7.2. Competitive landscape
      • 8.6.7.3. Regulatory framework
      • 8.6.7.4. Thailand market estimates and forecast, 2021 - 2033 (USD Million)
  • 8.7. Latin America
    • 8.7.1. Market estimates and forecasts 2021 to 2033 (USD Million)
    • 8.7.2. Brazil
      • 8.7.2.1. Brazil
      • 8.7.2.2. Competitive landscape
      • 8.7.2.3. Regulatory framework
      • 8.7.2.4. Brazil market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.7.3. Argentina
      • 8.7.3.1. Argentina country dynamics
      • 8.7.3.2. Competitive landscape
      • 8.7.3.3. Regulatory framework
      • 8.7.3.4. Argentina market estimates and forecast, 2021 - 2033 (USD Million)
  • 8.8. MEA
    • 8.8.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
    • 8.8.2. South Africa
      • 8.8.2.1. South Africa country dynamics
      • 8.8.2.2. Competitive landscape
      • 8.8.2.3. Regulatory framework
      • 8.8.2.4. South Africa market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.8.3. Saudi Arabia
      • 8.8.3.1. Saudi Arabia country dynamics
      • 8.8.3.2. Competitive landscape
      • 8.8.3.3. Regulatory framework
      • 8.8.3.4. Saudi Arabia market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.8.4. UAE
      • 8.8.4.1. UAE country dynamics
      • 8.8.4.2. Competitive landscape
      • 8.8.4.3. Regulatory framework
      • 8.8.4.4. UAE market estimates and forecast, 2021 - 2033 (USD Million)
    • 8.8.5. Kuwait
      • 8.8.5.1. Kuwait country dynamics
      • 8.8.5.2. Competitive landscape
      • 8.8.5.3. Regulatory framework
      • 8.8.5.4. Kuwait market estimates and forecast, 2021 - 2033 (USD Million)

Chapter 9. Competitive Landscape

  • 9.1. Company/Competition Categorization
  • 9.2. Strategy Mapping
  • 9.3. Company Market Position Analysis, 2024
  • 9.4. Company Profiles/Listing
    • 9.4.1. Nuance Communications (Microsoft)
      • 9.4.1.1. Company overview
      • 9.4.1.2. Financial performance
      • 9.4.1.3. Product benchmarking
      • 9.4.1.4. Strategic initiatives
    • 9.4.2. AiRo Digital Labs
      • 9.4.2.1. Company overview
    • 9.42.2. Financial performance
      • 9.4.2.3. Product benchmarking
      • 9.4.2.4. Strategic initiatives
    • 9.4.3. Accenture
      • 9.4.3.1. Company overview
      • 9.4.3.2. Financial performance
      • 9.4.3.3. Product benchmarking
      • 9.4.3.4. Strategic initiatives
    • 9.4.4. Cognizant
      • 9.4.4.1. Company overview
      • 9.4.4.2. Financial performance
      • 9.4.4.3. Product benchmarking
      • 9.4.4.4. Strategic initiatives
    • 9.4.5. Codoxo
      • 9.4.5.1. Company overview
      • 9.4.5.2. Financial performance
      • 9.4.5.3. Product benchmarking
      • 9.4.5.4. Strategic initiatives
    • 9.4.6. CareCloud, Inc.
      • 9.4.6.1. Company overview
      • 9.4.6.2. Financial performance
      • 9.4.6.3. Product benchmarking
      • 9.4.6.4. Strategic initiatives
    • 9.4.7. Hexaware Technologies Limited
      • 9.4.7.1. Company overview
      • 9.4.7.2. Financial performance
      • 9.4.7.3. Product benchmarking
      • 9.4.7.4. Strategic initiatives
    • 9.4.8. Oracle
      • 9.4.8.1. Company overview
      • 9.4.8.2. Financial performance
      • 9.4.8.3. Product benchmarking
      • 9.4.8.4. Strategic initiatives
    • 9.4.9. MST Solutions, L.L.C.
      • 9.4.9.1. Company overview
      • 9.4.9.2. Financial performance
      • 9.4.9.3. Product benchmarking
      • 9.4.9.4. Strategic initiatives
    • 9.4.10. Innovaccer, Inc.
      • 9.4.10.1. Company overview
      • 9.4.10.2. Financial performance
      • 9.4.10.3. Product benchmarking
      • 9.4.10.4. Strategic initiatives
    • 9.4.11. Amelia US LLC
      • 9.4.11.1. Company overview
      • 9.4.11.2. Financial performance
      • 9.4.11.3. Product benchmarking
      • 9.4.11.4. Strategic initiatives
    • 9.4.12. R1 RCM Inc
      • 9.4.12.1. Company overview
      • 9.4.12.2. Financial performance
      • 9.4.12.3. Product benchmarking
      • 9.4.12.4. Strategic initiatives
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제