¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.
¿¬ÀÌÀº ÆÒµ¥¹Í, °æÁ¦ ºÒ¾È, ÅõÀÚ ¹× °Å·¡ °¨¼Ò, ÁöÁ¤ÇÐÀû ¿äÀÎÀ¸·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õ µîÀÇ ¾î·Á¿ò ¼Ó¿¡¼µµ 3¼¼´ë ¹ÝµµÃ¼ »ê¾÷Àº 2022³âÀ¸·Î Á¢¾îµé¸ç È°±â¸¦ ¶ì±â ½ÃÀÛÇß½À´Ï´Ù. Àü·Â ¼ÒÀÚ¿¡ »ç¿ëµÇ´Â ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¼ÒÀç´Â ź¼Ò¹èÃâ·® Á¦·ÎÈ ¹× ģȯ°æ ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» À§ÇÑ Àü ¼¼°èÀûÀÎ ³ë·ÂÀ¸·Î ÀÎÇØ ½ÃÀåÀÇ ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀúÀü·Â ¼Òºñ¿Í °í¼º´ÉÀ» Ư¡À¸·Î ÇÏ´Â SiC ¼ÒÀÚ´Â °¡ÀüÁ¦Ç°ÀÇ ¼º´ÉÀ» ±Ø´ëÈÇÏ´Â Ãß¼¼¿¡ µû¶ó ÇâÈÄ Àü±âÀÚµ¿Â÷¿¡ ³Î¸® äÅÃµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
º» º¸°í¼¿¡¼´Â ¼¼°è ÀÚµ¿Â÷¿ë SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ½ÃÀå °³¿ä¿Í ¾÷°è µ¿Çâ, ¼¼°è »óÀ§ 5°³ SiC µð¹ÙÀ̽º Á¦Á¶¾÷ü(ST¸¶ÀÌÅ©·ÎÀÏ·ºÆ®·Î´Ð½º, ÀÎÇǴϾð, ¿ïÇÁ½ºÇǵå, ·Î¿È, ¿Â¼¼¹ÌÄÁ´öÅÍ, ¿Â¼¼¹ÌÄÁ´öÅÍ)ÀÇ °³¹ß µ¿Çâ¿¡ ´ëÇØ Á¤¸®ÇÏ¿© ÀüÇص帳´Ï´Ù.
¸ñÂ÷
Á¦1Àå ¼¼°èÀÇ Â÷·®¿ë SiC ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀÇ ¹ßÀü
- ¼¼°èÀÇ ³Ý Á¦·Î ź¼Ò ¹èÃâ¿¡ ´ëÇÑ ´ëó°¡ Àü±âÀÚµ¿Â÷ °³¹ßÀ» ÃßÁø
- xEv °³¹ßº° ÆÄ¿ö ÄÄÆ÷³ÍÆ® »ç¿ë·®°ú °¡Ä¡ÀÇ »ó´çÇÑ Áõ°¡
- SiC ÃâÇö¿¡ ÀÇÇØ ±âÁ¸ Si ±â¹Ý ¹ÝµµÃ¼ Àç·á ÇÑ°è°¡ º¸ÃæÇØÁø´Ù
- 800 V+SiC »ç¾çÀÌ Àü±âÀÚµ¿Â÷ ÁÖ·ù°¡ µÈ´Ù
- Àü±âÀÚµ¿Â÷ ¼ö¿ä È®´ë¿¡ ÀÇÇØ SiC ÆÄ¿ö ¹ÝµµÃ¼ ¼¼°è ½ÃÀå ¼ö¿ä°¡ È®´ë
Á¦2Àå ¼¼°èÀÇ SiC ÆÄ¿ö ¹ÝµµÃ¼ »ê¾÷ÀÇ ¹ßÀü
- ¼¼°èÀÇ SiC ÆÄ¿ö ¹ÝµµÃ¼ »ê¾÷Àº ½ÃÀå ÁýÁßµµ°¡ ³ôÀº
- SiC ÆÄ¿ö ¹ÝµµÃ¼ ¾÷°è ÁÖ¿ä º¸Æ²³ØÀ¸·Î¼ÀÇ ¾÷½ºÆ®¸² ±âÆÇ°ú ¿¡ÇÇÅýÃ
- ¼¼°è ž 5SiC µð¹ÙÀ̽º °ø±Þ¾÷ü °³¹ß µ¿Çâ
- ´ë±Ô¸ð »ý»ê, 8 ÀÎÄ¡ »ý»ê, »ç³» Á¦Á¶, Àü·«Àû Á¦ÈÞ°¡ ¾÷°è ÁÖ¿ä µ¿Çâ
- ´ë±Ô¸ð »ý»ê : SiC ¼ö¿ä Áõ°¡¿¡ µû¸¥ Á¦Á¶¾÷ü ÁÖ¿ä ¸ñÇ¥·Î ÇÑ »ý»ê´É·Â È®´ë
Á¦2Àå 4.2
- 8 ÀÎÄ¡ »ý»ê : ÁÖ¿ä Á¦Á¶¾÷ü´Â ¾ç»êȸ¦ ÇâÇؼ ±âÆÇ ±â¼ú ÃÖÀûÈ¿¡ ³ë·ÂÇÑ´Ù
Á¦2Àå 4.3
- ³»Á¦È : ¼¼°èÀÇ SiC ¾÷°è¿¡¼´Â ¼öÁ÷ÅëÇÕÀÌ °³¹ß µ¿Çâ ÁÖ·ù°¡ µÉ °¡´É¼ºÀÌ ³ô´Ù
- Àü·«Àû Á¦ÈÞ : SiC »ê¾÷ üÀÎÀÇ ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ ¿µÇâ·ÂÀÌ Áõ´ë
- Á¤ºÎ Á¤Ã¥ÀÌ SiC »ê¾÷ÀÇ ¹ßÀü Áß¿äÇÑ ÃßÁø·ÂÀÌ µÈ´Ù
- ¹Ì±¹ : SiC »ê¾÷ÀÇ ¹ßÀüÀ» ±º»ç ºÎ¹®°ú ¹æÀ§ ºÎ¹®¿¡ ÀÇÁ¸
- À¯·´ : ÀüÅëÀûÀÎ ÀÚµ¿Â÷ »ê¾÷ ¼ö¿ä¸¦ È°¿ëÇÏ°í, Áö¿ª ÅëÇÕ ÇÁ·ÎÁ§Æ®¸¦ ½Ç½Ã
- Áß±¹ : ±º¹Î ÅëÇÕ Á¤Ã¥À» ÅëÇØ ±¹°¡ ·¹º§¿¡¼ÀÇ IDM Àü¹®È¸¦ ÃßÁø
Á¦3Àå ÇâÈÄ Àü¸Á
ºÎ·Ï
ksm 23.06.05
The third-generation semiconductor industry has begun to gain momentum in 2022, despite challenges such as repeated outbreaks of the pandemic, economic instability, reduced investment and trades, and supply chain disruptions caused by geopolitical factors. SiC (Silicon Carbide) materials used in power devices have been grabbing market attention due to global efforts to achieve net-zero carbon emissions and the transition to green energy. Components associated with these semiconductors are rapidly moving from research and development to mass production. As EV (Electronic Vehicles) industry continues to boom, the demand for electric vehicle performance is also increasing. SiC devices characterized by low energy consumption and high performance are expected to be widely adopted in electric vehicles in the future, in line with the trends towards maximizing the performance of consumer electronics. The development of the third-generation semiconductor industry, represented by SiC, is thus likely to become a global trend. This report provides an overview of the global automotive SiC power semiconductor market and industry development and examines the key trends in the development of the global top-five SiC device suppliers, including STMicroelectronics, Infineon, Wolfspeed, Rohm, and Onsemi.
Table of Contents
1.Development of the Global Automotive SiC Power Semiconductor Market
- 1.1 Global Net-zero Carbon Emission Initiatives Drive the Development of Electric Vehicles
- 1.2 Significant Increases in Usage and Value of Power Components under xEv Development
- 1.3 The Emergence of SiC Compensates for Limitations of Traditional Si-based Semiconductor Materials
- 1.4 800V+SiC Specifications Becomes the Mainstream Trend in Electric Vehicle
- 1.5 The Expansion of Electric Vehicle Demand to Boost Global Market Demand for SiC Power Semiconductors
2.Development of the Global SiC Power Semiconductor Industry
- 2.1 Global SiC Power Semiconductor Industry Has High Market Concentration
- 2.2 Upstream Substrates and Epitaxy as Major Bottlenecks in the SiC Power Semiconductor Industry
- 2.3 Trends in the Development of the World’s Top Five SiC Device Suppliers
- 2.4 Large-scale Production, 8-inch Production, In-house Manufacturing, and Strategic Alliances are Key Industry Trends
- 2.4.1 Large-scale Production: Expanding Production Capacity as the Primary Goal for Manufacturers amid Increased SiC Demand
2.4.2
- 8-inch Production: Leading Manufacturers Strive to Optimize Substrate Technology to Achieve Mass Production
2.4.3
- In-house Manufacturing: Vertical Integration Likely to Become the Mainstream Development Trend in the Global SiC Industry
- 2.4.4 Strategic Alliances: Carmakers' Influence in the SiC Industry Chain Increases
- 2.5 Government Policies are a Key Driver for the Development of the SiC Industry
- 2.5.1 The US: Relies on the Military and Defense Sectors to Drive SiC Industry Development
- 2.5.2 Europe: Leverages Demand from the Traditional Automotive Industry and Implements Regional Integration Projects
- 2.5.3 China: Promoting National-level IDM Specialization at National Level through the Military-Civil Integration Policy
3.MIC Perspective
Appendix
List of Tables
- Table 1: Physical Performance Differences between Traditional Si Semiconductors and Third-generation Semiconductors based on SiC
- Table 2: Main Reasons for Difficulties in SiC Substrate Production
- Table 3: Trends in the Development of Major SiC Power Semiconductor Manufacturers Worldwide
- Table 4: Strategic Alliances of Major SiC Device Suppliers
List of Figures
- Figure 1: Net-zero Carbon Emission Targets of Major Countries Worldwide
- Figure 2: Timeline of Carmakers Introducing SiC MOSFETs in their Vehicles
- Figure 3: Global SiC Power Device Market Forecast by Application, 2019 - 2025
- Figure 4: Global Market Share of SiC Substrates (Left) and SiC Power Devices (Right)
- Figure 3: SiC Wafer Manufacturing Process and Production Cost Breakdown
- Figure 4: Vertical Integration and Substrate Supply of Key SiC Manufacturers Worldwide