½ÃÀ庸°í¼­
»óǰÄÚµå
1540868

¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå º¸°í¼­ : ÄÄÆ÷³ÍÆ®º°, Àü°³ ¸ðµåº°, Á¶Á÷ ±Ô¸ðº°, ºñÁî´Ï½º ±â´Éº°, ¾÷°èº°, Áö¿ªº°(2024-2032³â)

Data Wrangling Market Report by Component, Deployment Mode, Organization Size, Business Function, Industry Vertical, and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 138 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå ±Ô¸ð´Â 2023³â 30¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC ±×·ìÀº ½ÃÀåÀÌ 2032³â±îÁö 106¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀ̸ç, 2024³â°ú 2032³â »çÀÌ¿¡ 14.6%ÀÇ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù.

µ¥ÀÌÅÍ ·©±Û¸µÀº Á¤¸®µÇÁö ¾ÊÀº µ¥ÀÌÅ͸¦ º¯È¯ÇÏ°í ¸ÅÇÎÇÏ¿© ÀÇ¹Ì ÀÖ´Â ºÐ¼® ÀλçÀÌÆ®À» ¾ò´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. ¿©±â¿¡´Â °í±Þ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© µ¥ÀÌÅÍ ½Ã°¢È­ ¹× Áý°è¸¦ À§ÇØ ¿ø½Ã µ¥ÀÌÅ͸¦ Á¤¸®, À籸¼º ¹× °­È­ÇÏ´Â ÀÛ¾÷ÀÌ Æ÷ÇԵ˴ϴÙ. µ¥ÀÌÅÍ ·©±Û¸µ µµ±¸ ¹× ¼Ö·ç¼ÇÀº ¿ÂÇÁ·¹¹Ì½º ¶Ç´Â Ŭ¶ó¿ìµå¿¡ ¹èÆ÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. ó¸®µÈ µ¥ÀÌÅÍ´Â ¶ÇÇÑ ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), µ¥ÀÌÅÍ ºÐ¼® µîÀÇ °í±Þ ÀÛ¾÷¿¡ Ȱ¿ëµË´Ï´Ù. ¶ÇÇÑ À繫, ¸¶ÄÉÆÃ, ¿µ¾÷, ¿î¿µ, Àλç(HR) µî ´Ù¾çÇÑ ºñÁî´Ï½º ±â´ÉÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀº ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI), ÀÇ·á, ¼Ò¸Å, ¹Ìµð¾î, Á¦Á¶, Á¤º¸ ±â¼ú(IT) µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ±¤¹üÀ§ÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå µ¿Çâ :

IT ¾÷°èÀÇ ÇöÀúÇÑ ¼ºÀå°ú µ¥ÀÌÅÍ Ã³¸® ¹× û¼Ò¸¦ À§ÇÑ È¿°úÀûÀÎ µµ±¸¿Í ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ½ÃÀå Àü¸ÁÀ» ¹à°Ô ÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. °Ô´Ù°¡ ¼ÒºñÀÚµé »çÀÌ¿¡¼­ µ¥ÀÌÅÍ ½Å·Ú¼º¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ´Ù´Â °ÍÀº µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Áß¼Ò±â¾÷°ú ´ë±Ô¸ð ±â¾÷Àº ÀúǰÁú µ¥ÀÌÅÍ ÇÊÅ͸µ, ºÐÆ÷ ¹× ºÒÀÏÄ¡ ½Ã°¢È­, Á¶Á÷ ÇÁ·Î¼¼½º °³¼±¿¡ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» Ȱ¿ëÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó BFSI ±â°üÀº µ¥ÀÌÅÍ º¸¾È Çâ»ó, ¹Ý±¸Á¶È­ ¹× ºñ±¸Á¶È­ µ¥ÀÌÅÍ Á¤¸®, ¿Â¶óÀÎ ¹ðÅ· Æ÷ÅÐ ÃÖÀûÈ­¸¦ À§ÇØ µ¥ÀÌÅÍ ·©±Û¸µ ÇÁ·Î¼¼½º¸¦ ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºòµ¥ÀÌÅÍ¿Í ¿§Áö ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÇ µµÀÔ µî ´Ù¾çÇÑ ±â¼úÀÇ Áøº¸µµ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº Á¶Á÷ÀÇ ±â´É¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ÀνôøÆ®ÀÇ ½Ç½Ã°£ ¿¹Ãø ¹× ¸ð´ÏÅ͸µÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ±× ¹ÛÀÇ ¿äÀÎÀ¸·Î´Â ±Þ¼ÓÇÑ µðÁöÅÐÈ­, ±¤¹üÀ§ÇÑ R&D Ȱµ¿ µîÀ» µé ¼ö ÀÖÀ¸¸ç ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·ç´Â ÁÖ¿ä Áú¹®

  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ 2024³âºÎÅÍ 2032³â ¿¹»ó ¼ºÀå·üÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ±¸¼º ¿ä¼Òº° °íÀåÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ Àü°³ ¸ðµåº° °íÀåÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ Á¶Á÷ ±Ô¸ðº° ³»¿ªÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ºñÁî´Ï½º ±â´Éº° °íÀåÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ¾÷°èº° ³»¿ªÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ÁÖ¿ä Áö¿ªÀº?
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷Àº?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ·©±Û¸µ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°

  • ¼Ö·ç¼Ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¼­ºñ½º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ³»¿ª : Àü°³ ¸ðµåº°

  • ¿ÂÇÁ·¹¹Ì½º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Ŭ¶ó¿ìµå ±â¹Ý
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ³»¿ª : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Áß¼Ò±â¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ºÐ¼® : ºñÁî´Ï½º ±â´Éº°

  • ±ÝÀ¶
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¸¶ÄÉÆÃ°ú ÆÇ¸Å
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿ÀÆÛ·¹À̼Ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Àλç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦10Àå ½ÃÀå ºÐ¼® : ¾÷°èº°

  • BFSI
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¼Ò¸Å¾÷ ¹× ÀüÀÚ»ó°Å·¡
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • IT ¹× Åë½Å
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Á¦Á¶
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±âŸ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦11Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ºÐ¼® : ±¹°¡º°
    • ½ÃÀå ¿¹Ãø

Á¦12Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦13Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦14Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • °æÀïµµ
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦15Àå °¡°Ý ºÐ¼®

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • ALTERYX INC.
    • Altair Engineering Inc.
    • Hitachi Vantara Corporation
    • Impetus Technologies Inc.
    • International Business Machines Corporation
    • Oracle Corporation
    • SAS Institute Inc.
    • Teradata Corporation
    • TIBCO Software Inc
    • Trifacta Software Inc.
BJH 24.09.12

The global data wrangling market size reached US$ 3.0 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 10.6 Billion by 2032, exhibiting a growth rate (CAGR) of 14.6% during 2024-2032.

Data wrangling refers to the transformation and mapping of unorganized data to gain meaningful analytical insights. It involves cleaning, restructuring and enhancing raw data for data visualization and aggregation using advanced algorithms. Data wrangling tools and solutions can be deployed on-premises or on the cloud. The processed data is further utilized for advanced tasks, such as artificial intelligence (AI), machine learning (ML) and data analytics. In addition, it can also be used for optimizing various business functions, such as finance, marketing, sales, operation and human resources (HR). As a result, data wrangling solutions find extensive applications across various industries, including banking, financial services and insurance (BFSI), healthcare, retail, media, manufacturing and information technology (IT).

Data Wrangling Market Trends:

Significant growth in the IT industry, along with the increasing demand for effective tools and software for data processing and cleaning, is one of the key factors creating a positive outlook for the market. Moreover, rising concerns regarding data veracity among the consumers are escalating the demand for data wrangling solutions. Small, medium and large-scale organizations use these solutions to filter low-quality data, visualize distributions and inconsistencies and improve the organizational processes. In line with this, BFSI institutions use data wrangling processes to improve data security, organize semi-structured and unstructured data and optimize online banking portals. Additionally, various technological advancements, such as the deployment of big data and edge computing solutions, are acting as other growth-inducing factors. These technologies facilitate real-time forecasting and monitoring of incidents that may have a direct impact on the functioning of the organizations. Other factors, including rapid digitization, along with extensive research and development (R&D) activities, are anticipated to drive the market toward growth.

Key Market Segmentation:

IMARC Group provides an analysis of the key trends in each sub-segment of the global data wrangling market report, along with forecasts at the global, regional and country level from 2024-2032. Our report has categorized the market based on component, deployment mode, organization size, business function and industry vertical.

Breakup by Component:

Solution

Service

Breakup by Deployment Mode:

On-premises

Cloud-based

Breakup by Organization Size:

Large Enterprises

Small and Medium Enterprises

Breakup by Business Function:

Finance

Marketing and Sales

Operations

Human Resources

Breakup by Industry Vertical:

BFSI

Government and Public Sector

Healthcare and Life Science

Retail and E-commerce

Media and Entertainment

IT and Telecom

Manufacturing

Others

Breakup by Region:

North America

United States

Canada

Asia-Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

Competitive Landscape:

The competitive landscape of the industry has also been examined along with the profiles of the key players being ALTERYX INC., Altair Engineering Inc., Hitachi Vantara Corporation, Impetus Technologies Inc., International Business Machines Corporation, Oracle Corporation, SAS Institute Inc., Teradata Corporation, TIBCO Software Inc and Trifacta Software Inc.

Key Questions Answered in This Report

  • 1. What was the size of the global data wrangling market in 2023?
  • 2. What is the expected growth rate of the global data wrangling market during 2024-2032?
  • 3. What are the key factors driving the global data wrangling market?
  • 4. What has been the impact of COVID-19 on the global data wrangling market?
  • 5. What is the breakup of the global data wrangling market based on the component?
  • 6. What is the breakup of the global data wrangling market based on the deployment mode?
  • 7. What is the breakup of the global data wrangling market based on organization size?
  • 8. What is the breakup of the global data wrangling market based on the business function?
  • 9. What is the breakup of the global data wrangling market based on the industry vertical?
  • 10. What are the key regions in the global data wrangling market?
  • 11. Who are the key players/companies in the global data wrangling market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Data Wrangling Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Component

  • 6.1 Solution
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Service
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast

7 Market Breakup by Deployment Mode

  • 7.1 On-premises
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Cloud-based
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Organization Size

  • 8.1 Large Enterprises
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Small and Medium Enterprises
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast

9 Market Breakup by Business Function

  • 9.1 Finance
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Marketing and Sales
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Operations
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Human Resources
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast

10 Market Breakup by Industry Vertical

  • 10.1 BFSI
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 Government and Public Sector
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Healthcare and Life Science
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast
  • 10.4 Retail and E-commerce
    • 10.4.1 Market Trends
    • 10.4.2 Market Forecast
  • 10.5 Media and Entertainment
    • 10.5.1 Market Trends
    • 10.5.2 Market Forecast
  • 10.6 IT and Telecom
    • 10.6.1 Market Trends
    • 10.6.2 Market Forecast
  • 10.7 Manufacturing
    • 10.7.1 Market Trends
    • 10.7.2 Market Forecast
  • 10.8 Others
    • 10.8.1 Market Trends
    • 10.8.2 Market Forecast

11 Market Breakup by Region

  • 11.1 North America
    • 11.1.1 United States
      • 11.1.1.1 Market Trends
      • 11.1.1.2 Market Forecast
    • 11.1.2 Canada
      • 11.1.2.1 Market Trends
      • 11.1.2.2 Market Forecast
  • 11.2 Asia-Pacific
    • 11.2.1 China
      • 11.2.1.1 Market Trends
      • 11.2.1.2 Market Forecast
    • 11.2.2 Japan
      • 11.2.2.1 Market Trends
      • 11.2.2.2 Market Forecast
    • 11.2.3 India
      • 11.2.3.1 Market Trends
      • 11.2.3.2 Market Forecast
    • 11.2.4 South Korea
      • 11.2.4.1 Market Trends
      • 11.2.4.2 Market Forecast
    • 11.2.5 Australia
      • 11.2.5.1 Market Trends
      • 11.2.5.2 Market Forecast
    • 11.2.6 Indonesia
      • 11.2.6.1 Market Trends
      • 11.2.6.2 Market Forecast
    • 11.2.7 Others
      • 11.2.7.1 Market Trends
      • 11.2.7.2 Market Forecast
  • 11.3 Europe
    • 11.3.1 Germany
      • 11.3.1.1 Market Trends
      • 11.3.1.2 Market Forecast
    • 11.3.2 France
      • 11.3.2.1 Market Trends
      • 11.3.2.2 Market Forecast
    • 11.3.3 United Kingdom
      • 11.3.3.1 Market Trends
      • 11.3.3.2 Market Forecast
    • 11.3.4 Italy
      • 11.3.4.1 Market Trends
      • 11.3.4.2 Market Forecast
    • 11.3.5 Spain
      • 11.3.5.1 Market Trends
      • 11.3.5.2 Market Forecast
    • 11.3.6 Russia
      • 11.3.6.1 Market Trends
      • 11.3.6.2 Market Forecast
    • 11.3.7 Others
      • 11.3.7.1 Market Trends
      • 11.3.7.2 Market Forecast
  • 11.4 Latin America
    • 11.4.1 Brazil
      • 11.4.1.1 Market Trends
      • 11.4.1.2 Market Forecast
    • 11.4.2 Mexico
      • 11.4.2.1 Market Trends
      • 11.4.2.2 Market Forecast
    • 11.4.3 Others
      • 11.4.3.1 Market Trends
      • 11.4.3.2 Market Forecast
  • 11.5 Middle East and Africa
    • 11.5.1 Market Trends
    • 11.5.2 Market Breakup by Country
    • 11.5.3 Market Forecast

12 SWOT Analysis

  • 12.1 Overview
  • 12.2 Strengths
  • 12.3 Weaknesses
  • 12.4 Opportunities
  • 12.5 Threats

13 Value Chain Analysis

14 Porters Five Forces Analysis

  • 14.1 Overview
  • 14.2 Bargaining Power of Buyers
  • 14.3 Bargaining Power of Suppliers
  • 14.4 Degree of Competition
  • 14.5 Threat of New Entrants
  • 14.6 Threat of Substitutes

15 Price Analysis

16 Competitive Landscape

  • 16.1 Market Structure
  • 16.2 Key Players
  • 16.3 Profiles of Key Players
    • 16.3.1 ALTERYX INC.
      • 16.3.1.1 Company Overview
      • 16.3.1.2 Product Portfolio
      • 16.3.1.3 Financials
    • 16.3.2 Altair Engineering Inc.
      • 16.3.2.1 Company Overview
      • 16.3.2.2 Product Portfolio
      • 16.3.2.3 Financials
      • 16.3.2.4 SWOT Analysis
    • 16.3.3 Hitachi Vantara Corporation
      • 16.3.3.1 Company Overview
      • 16.3.3.2 Product Portfolio
    • 16.3.4 Impetus Technologies Inc.
      • 16.3.4.1 Company Overview
      • 16.3.4.2 Product Portfolio
    • 16.3.5 International Business Machines Corporation
      • 16.3.5.1 Company Overview
      • 16.3.5.2 Product Portfolio
      • 16.3.5.3 Financials
      • 16.3.5.4 SWOT Analysis
    • 16.3.6 Oracle Corporation
      • 16.3.6.1 Company Overview
      • 16.3.6.2 Product Portfolio
      • 16.3.6.3 Financials
      • 16.3.6.4 SWOT Analysis
    • 16.3.7 SAS Institute Inc.
      • 16.3.7.1 Company Overview
      • 16.3.7.2 Product Portfolio
      • 16.3.7.3 SWOT Analysis
    • 16.3.8 Teradata Corporation
      • 16.3.8.1 Company Overview
      • 16.3.8.2 Product Portfolio
      • 16.3.8.3 Financials
      • 16.3.8.4 SWOT Analysis
    • 16.3.9 TIBCO Software Inc
      • 16.3.9.1 Company Overview
      • 16.3.9.2 Product Portfolio
      • 16.3.9.3 SWOT Analysis
    • 16.3.10 Trifacta Software Inc.
      • 16.3.10.1 Company Overview
      • 16.3.10.2 Product Portfolio
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦