½ÃÀ庸°í¼­
»óǰÄÚµå
1541762

¼¼°èÀÇ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½ÃÀå º¸°í¼­ : ¿ëµµº°, Áö¿ªº°(2024-2032³â)

Flywheel Energy Storage Market Report by Application (Uninterruptible Power Supply (UPS), Distributed Energy Generation, Transport, Data Centers, and Others), and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 137 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½ÃÀå ¼¼°è ½ÃÀå ±Ô¸ð´Â 2023³â 3¾ï 2,020¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ, ÀÌ ½ÃÀåÀº 2032³â±îÁö 6¾ï 780¸¸ ´Þ·¯¿¡ ´ÞÇϰí, 2024-2032³â¿¡ °ÉÃÄ 7.2%ÀÇ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ½ÅÀç»ý¿¡³ÊÁö ÅëÇÕ Áõ°¡, ¹«Á¤ÀüÀü·Â °ø±Þ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÇöóÀÌÈÙÀÌ º¸´Ù È¿À²ÀûÀ¸·Î ¿¡³ÊÁö¸¦ ÀúÀ塤¹æÃâÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â º¹ÇÕÀç·áÀÇ Áøº¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ²ÙÁØÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.

ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½ÃÀå ºÐ¼®

½ÃÀåÀÇ ¼ºÀå°ú ±Ô¸ð ¼¼°èÀÇ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½ÃÀåÀº ½ÅÀç»ý¿¡³ÊÁö¿øÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¾î ½Å·Ú¼ºÀÌ ³ôÀº Àü·Â°ø±Þ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ¾ÈÁ¤ÀûÀÎ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ : ÁÖ¿ä ÃËÁø¿äÀÎ : õ¿¬ ÀÚ¿øÀÇ °í°¥ ¾ïÁ¦¿¡ ´ëÇÑ °ü½É Áõ°¡, ¹«Á¤Àü Àü¿ø °ø±Þ ÀåÄ¡(UPS) ¼Ö·ç¼ÇÀÇ Çʿ伺, ºÐ»ê ¿¡³ÊÁö ÀÚ¿ø¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. ȯ°æÀÇ Áö¼Ó°¡´É¼º, ÁöÁöÀû ±ÔÁ¦ Á¤Ã¥, Àü±âÀÚµ¿Â÷(EV)ÀÇ ¼ºÀåµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÕ´Ï´Ù.

±â¼ú ¹ßÀü : ¿¡³ÊÁö ¹Ðµµ Çâ»ó, ½Ã½ºÅÛ È¿À² °³¼±, ºñ¿ë Àý°¨¿¡ ÁßÁ¡À» µÐ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. R&D(R&D)ÀÇ ³ë·Âµµ Àç·á °­È­, ½Ã½ºÅÛ Å©±â Ãà¼Ò, Àü¹ÝÀûÀÎ ¼º´É Çâ»óÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.

»ê¾÷¿ëµµ: ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀåÀº UPS, ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü, ¿î¼Û, µ¥ÀÌÅͼ¾ÅÍ, ÁÖÅÃ¿ë ¿¡³ÊÁö ÀúÀå¿¡ Àû¿ëµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ : ½ÃÀå µ¿Çâ¿¡´Â °èÅë ¾ÈÁ¤È­¿¡¼­ ÇöóÀÌÈÙ »ç¿ë, Àç»ý °¡´É ¿¡³ÊÁö ÅëÇÕ Áö¿ø, ¿¡³ÊÁö ȸº¹·Â °­È­¿¡¼­ ÇöóÀÌÈÙÀÇ ¿ªÇÒÀÌ Æ÷ÇԵ˴ϴÙ. ÇöóÀÌÈÙÀº Á¤Àü ½Ã ¿øÈ°ÇÑ Àü¿ø °ø±ÞÀ» À§ÇØ µ¥ÀÌÅͼ¾ÅÍ¿¡¼­ äÅõǴ °æ¿ì°¡ ´Ã¾î³ª°í ÀÖÀ¸¸ç, ¿î¼Û ºÎ¹®¿¡¼­´Â ȸ»ý ºê·¹ÀÌÅ©¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Áö¸®Àû µ¿Çâ : ºÏ¹Ì´Â ½ÃÀåÀ» ¼±µµÇϰí ÀÖÁö¸¸, ÀÌ´Â ¼ÛÀü¸ÁÀÇ Çö´ëÈ­¿Í °ßÁ¶ÇÑ µ¥ÀÌÅͼ¾ÅÍ »ê¾÷¿¡ ±âÀÎÇÕ´Ï´Ù. ±×·¯³ª ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½ÅÀç»ý¿¡³ÊÁö È®´ë¿Í ¼ö¼ÛÀüÈ­·Î ±Þ¼ºÀå ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

°æÀï ±¸µµ: ÁÖ¿ä ±â¾÷Àº R&D¿¡ ÅõÀÚÇÏ°í ±×¸®µå ¾ÈÁ¤È­, Àç»ý °¡´É ¿¡³ÊÁö ÅëÇÕ ¹× UPS ¿ëµµÀ» À§ÇÑ ´Ù¾çÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¸ç ¾÷°èÀÇ ¼ºÀå°ú Çõ½Å¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

°úÁ¦¿Í ±âȸ: °úÁ¦¿¡´Â Ãß°¡ ºñ¿ë Àý°¨ÀÇ Çʿ伺, ÈñÅä·ù Àç·á ÀÇÁ¸¿¡ ´ëÇÑ ´ëÀÀ, ÀáÀç °í°´ÀÇ ÀÎÁöµµ Çâ»ó µîÀÌ ÀÖ½À´Ï´Ù. ±×·¯³ª °èÅë ¾ÈÁ¤È­¸¦ À§ÇÑ ÇöóÀÌÈÙ, ½ÅÈï ½ÃÀåÀ¸·ÎÀÇ È®´ë, ȯ°æ¹®Á¦ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇÑ ÇöóÀÌÈÙ ±â¼úÀÇ Áö¼Ó°¡´É¼º °­È­ µîÀÇ ±âȸ°¡ ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½ÃÀå °æÇâ

½ÅÀç»ý¿¡³ÊÁö ÅëÇÕ È®´ë

dz·Â¹ßÀüÀ̳ª ž籤 ¹ßÀü°ú °°Àº ½ÅÀç»ý¿¡³ÊÁöÀÇ º¸±ÞÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ»êȭź¼Ò ¹èÃâ·®ÀÇ °¨¼Ò¿Í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö·ÎÀÇ ÀüȯÀÌ ¼¼°èÀûÀ¸·Î ÁÖ¸ñµÇ°í ÀÖ´Â °¡¿îµ¥, Àç»ý°¡´É ¿¡³ÊÁöÀÇ °£ÇæÀûÀÎ ¼ºÁúÀº µ¶ÀÚÀûÀÎ °úÁ¦¸¦ Á¦½ÃÇϰí ÀÖ½À´Ï´Ù. ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ Àüȯ¿¡¼­ Áß¿äÇÑ Àο¡ÀÌºí·¯·Î¼­ »ó½ÂÇϰí ÀÖ½À´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀüÀº ³¯¾¾¿Í ÇÞºû ½Ã°£°ú °°Àº ¿äÀο¡ µû¶ó º»ÁúÀûÀ¸·Î º¯µ¿ÇÕ´Ï´Ù. ÇöóÀÌÈÙ½Ä ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº À̿밡´ÉÇÑ ¶§¿¡ À׿©¿¡³ÊÁö¸¦ È¿À²ÀûÀ¸·Î ȸ¼öÇϰí, ¼ö¿ä°¡ ÇÇÅ©¿¡ µµ´ÞÇßÀ» ¶§³ª Àç»ý °¡´É ¿¡³ÊÁö¿øÀÌ ÀϽÃÀûÀ¸·Î Ȱµ¿À» Á¤ÁöÇßÀ» ¶§¿¡ ¹æÃâÇÔÀ¸·Î½á º¯µ¿¼ºÀ» ´Ù·ì´Ï´Ù. ÀÀ´ä ½Ã°£ÀÌ ºü¸£°í ¿¡³ÊÁö ¹Ðµµ°¡ ³ô±â ¶§¹®¿¡ Àç»ý °¡´É ¿¡³ÊÁö Ãâ·ÂÀÇ º¯µ¿À» ÆòȰȭÇÏ´Â µ¥ ÀÌ»óÀûÀÔ´Ï´Ù. °¢±¹ÀÌ ¾ß½ÉÂù ±ú²ýÇÑ ¿¡³ÊÁö ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇÏ´Â µ¿¾È Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÅëÇÕÀ» ÃËÁøÇÏ´Â ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀåÀÇ ¿ªÇÒÀº °ú´ë Æò°¡ÇÒ ¼ö ¾ø½À´Ï´Ù. ¿¡³ÊÁö ¹ßÀü°ú ¼Òºñ »çÀÌÀÇ ¿ÏÃæÀç ¿ªÇÒÀ» ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀ̰í À׿© Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀüÀÇ ¾ïÁ¦¸¦ ÁÙÀÌ°í ¾ÈÁ¤ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ±â¿©ÇÕ´Ï´Ù.

¼ÛÀü¸Á ±Ù´ëÈ­¿¡ ´ëÇÑ ´ëó

Á¤ºÎ¿Í Àü·Âȸ»ç°¡ ¹èÀü½Ã½ºÅÛÀÇ ½Å·Ú¼º, È¿À²¼º, ȸº¹·Â Çâ»óÀ» ¸ñÇ¥·Î Çϰí Àֱ⠶§¹®¿¡ ¼ÛÀü¸ÁÀÇ ±Ù´ëÈ­ ±¸»óÀº ¼¼°è¿¡¼­ ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ º¯È­¿¡¼­ ÇöóÀÌÈÙ ÃàÀü ½Ã½ºÅÛÀº ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ÛÀü¸ÁÀÇ Çö´ëÈ­¿¡´Â Àü±âÀÇ È帧À» º¸´Ù È¿°úÀûÀ¸·Î °¨½Ã¡¤Á¦¾îÇϱâ À§ÇÑ Ã·´Ü ±â¼úÀÇ µµÀÔÀÌ Æ÷ÇԵ˴ϴÙ. ÇöóÀÌÈÙÀº Àü¾Ð°ú Á֯ļö¸¦ Á¶Á¤ÇÏ¿© ¼ÛÀü¸ÁÀ» ¾ÈÁ¤È­½Ã۰í ÀϰüµÇ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â °ø±ÞÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ±Þ°ÝÇÑ ºÎÇÏ º¯µ¿ ¹× Àü¾Ð º¯µ¿°ú °°Àº °èÅë ±³¶õ¿¡ ´ëÇØ ¹Ð¸®ÃÊ ´ÜÀ§·Î ÀÀ´äÇÏ´Â ÇöóÀÌÈÙÀÇ ´É·ÂÀº Çö´ëÈ­µÈ ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇϴµ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ ÀÀ´ä¼ºÀº Á¤Àü ¹× Àü·Â ǰÁú ¹®Á¦¸¦ ¹æÁöÇÏ°í º¸´Ù °ß°íÇϰí È¿À²ÀûÀÎ Àü·Â ÀÎÇÁ¶ó¿¡ ±â¿©ÇÕ´Ï´Ù.

¹«Á¤Àü Àü¿ø °ø±Þ ÀåÄ¡(UPS) ¼ö¿ä Áõ°¡

¹«Á¤Àü Àü¿ø °ø±Þ ÀåÄ¡(UPS)°¡ °¡Àå Áß¿äÇÑ µðÁöÅÐÈ­°¡ ÁøÇàµÇ°í ÀÖ´Â ¼¼°è¿¡¼­´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ, ÀÇ·á ½Ã¼³, Åë½Å, Á¦Á¶¾÷ µîÀÇ ¾÷°è¿¡¼­´Â ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °¡µ¿ ÁßÁö ½Ã°£°ú µ¥ÀÌÅÍ À¯ÃâÀ» ¹æÁöÇϱâ À§ÇØ ¿øÈ°ÇÑ Àü¿ø ¿¬¼Ó¼ºÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀº Ź¿ùÇÑ ½Å·Ú¼º°ú ¼º´ÉÀ¸·Î UPS ¿ëµµ¿¡¼­ °¢±¤¹Þ°í ÀÖ½À´Ï´Ù.

ÇöóÀÌÈÙÀº °í¼ÓÀ¸·Î ȸÀüÇÏ´Â ·ÎÅÍ¿¡ ¿îµ¿ ¿¡³ÊÁö¸¦ ÀúÀåÇÏ¿© ¼ÛÀü¸ÁÀÌ Â÷´ÜµÉ ¶§ Áï½Ã Àü·ÂÀ¸·Î º¯È¯ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¹èÅ͸® ±â¹Ý UPS ½Ã½ºÅÛ°ú ´Þ¸® ÇöóÀÌÈÙÀº ÀÛµ¿ ¼ö¸íÀÌ ±æ°í À¯Áöº¸¼ö°¡ ÃÖ¼ÒÈ­µÇ¾î ģȯ°æÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁ¡À¸·Î ÀÎÇØ, ÇöóÀÌÈÙ ±â¹Ý UPS ¼Ö·ç¼ÇÀº ¼ø°£ÀûÀÎ Á¤Àü ¹× µ¥ÀÌÅÍ ¹«°á¼ºÀÇ À§ÇèÁ¶Â÷µµ Çã¿ëÇÒ ¼ö ¾ø´Â ±â¾÷°ú Á¶Á÷¿¡ ¼±È£µÇ´Â ¼±ÅÃÀÔ´Ï´Ù.

¿¡³ÊÁö ÀúÀå ±â¼úÀÇ ¹ßÀü

¿¡³ÊÁö ÀúÀå ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÇöóÀÌÈÙ ½Ã½ºÅÛÀº °í¼º´É Àç·áÀÇ °³¹ß, ¿¡³ÊÁö º¯È¯ È¿À²ÀÇ Çâ»ó, ¿¡³ÊÁö ÀúÀå ¿ë·® Áõ°¡¿¡ ÀÇÇØ ÇöÀúÇÑ °³¼±À» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ È¿À²¼º°ú ºñ¿ë È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. º¹ÇÕÀç·áÀÇ Áøº¸¿¡ ÀÇÇØ ÇöóÀÌÈÙÀº ¿¡³ÊÁö¸¦ º¸´Ù È¿À²ÀûÀ¸·Î ÀúÀ塤¹æÃâÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ¹«Á¤Àü Àü¿ø °ø±Þ ÀåÄ¡(UPS)¿¡¼­ ¼ÛÀü¸Á ¾ÈÁ¤È­¿¡ À̸£±â±îÁö ÇöóÀÌÈÙÀ» È¿°úÀûÀ¸·Î ¹èÆ÷ÇÒ ¼ö ÀÖ´Â ÀÀ¿ë ¹üÀ§°¡ ³Ð¾îÁý´Ï´Ù. °Ô´Ù°¡ ÇöÀç ÁøÇà ÁßÀÎ R&D(R&D)´Â ÇöóÀÌÈÙ ½Ã½ºÅÛÀÇ Å©±â¿Í ¹«°Ô¸¦ ÁÙÀÌ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, º¸´Ù ÄÄÆÑÆ®ÇÏ°í ´Ù¾çÇÑ È¯°æ¿¡ ÅëÇÕÇϱ⠽¬¿öÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀåÀ» º¸´Ù ±¤¹üÀ§ÇÑ »ê¾÷ ¹× ¿ëµµ¿¡ º¸´Ù ¸Å·ÂÀûÀÎ ¼±ÅÃÀ¸·Î ¸¸µå´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

ȯ°æÀÇ Áö¼Ó°¡´É¼º°ú ±ÔÁ¦Á¤Ã¥

ȯ°æÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¿ì·Á°¡ Áõ°¡ÇÏ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ Á¤Ã¥°ú ±ÔÁ¦°¡ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇöóÀÌÈÙÀº ±âÁ¸ÀÇ ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ºñÇØ º»ÁúÀûÀ¸·Î ȯ°æ ģȭÀûÀÔ´Ï´Ù. À¯ÇØ ¹°ÁúÀÌ Æ÷ÇÔµÈ ¹èÅ͸®¿Í ´Þ¸® ÇöóÀÌÈÙ ½Ã½ºÅÛÀº ȯ°æ ģȭÀûÀÌ¸ç ¿îÀü Áß ¹èÃâµµ 0ÀÔ´Ï´Ù. À̰ÍÀº ´õ ±ú²ýÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç°ú Áö¼Ó°¡´É¼ºÀ» ÇâÇÑ ¼¼°èÀÇ ¿òÁ÷ÀÓÀ» º¸¿ÏÇÏ´Â °ÍÀÔ´Ï´Ù. Á¤ºÎ¿Í »ê¾÷°è°¡ ÀÌ»êȭź¼Ò °¨Ãà ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇÏ´Â µ¿¾È, ÇöóÀÌÈÙ ¿¡³ÊÁö ½ºÅ丮Áö´Â ȯ°æ ģȭÀûÀ̶ó´Â Á¡¿¡¼­ ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸¹Àº Áö¿ª¿¡¼­ ÇöóÀÌÈÙ°ú °°Àº ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀ» ¼ÛÀü¸Á¿¡ ÅëÇÕÇÏ´Â °ÍÀ» Àå·ÁÇϰųª Àǹ«È­ÇÏ´Â ±ÔÁ¦°¡ ½ÃÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤Ã¥Àº ¼ÛÀü¸ÁÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í, ¼ÛÀü ¼Õ½ÇÀ» ÁÙÀ̰í, Àç»ý °¡´É ¿¡³ÊÁöÀÇ µµÀÔÀ» Áö¿øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ Àü°³¸¦ ÃËÁøÇϱâ À§ÇØ Àå·Á±Ý°ú º¸Á¶±ÝÀÌ Á¦°øµÇ´Â °æ¿ì°¡ ¸¹¾Æ ÇöóÀÌÈÙ ½ÃÀåÀ» ´õ¿í °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • ¹«Á¤Àü Àü¿ø ÀåÄ¡(UPS)
  • ºÐ»êÇü ¿¡³ÊÁö ¹ßÀü
  • ¼ö¼Û
  • µ¥ÀÌÅͼ¾ÅÍ
  • ±âŸ

Á¦7Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ºÐ¼® : ±¹°¡º°
    • ½ÃÀå ¿¹Ãø

Á¦8Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦9Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦10Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • °æÀïµµ
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦11Àå °¡°Ý ºÐ¼®

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • ABB Ltd
    • Adaptive Balancing Power GmbH
    • Amber Kinetics Inc.
    • Beacon Power LLC
    • Calnetix Technologies LLC
    • Energiestro
    • Langley Holdings plc
    • Oxto Energy
    • Phillips Service Industries Inc.
    • Schwungrad Energie Limited
    • Siemens Aktiengesellschaft
    • Stornetic GmbH
    • Teraloop Oy
JHS 24.09.20

The global flywheel energy storage market size reached US$ 320.2 Million in 2023. Looking forward, the market is expected to reach US$ 607.8 Million by 2032, exhibiting a growth rate (CAGR) of 7.2% during 2024-2032. The market is experiencing steady growth driven by the increasing integration of renewable energy, the escalating demand for uninterrupted power supply and rising advancements in composite materials that enable flywheels to store and release energy more efficiently.

Flywheel Energy Storage Market Analysis:

Market Growth and Size: The global flywheel energy storage market is experiencing stable growth on account of the rising integration of renewable energy sources and the need for reliable power supply.

Major Market Drivers: Key drivers include the increasing focus on restricting the depletion of natural resources, the need for uninterruptible power supply (UPS) solutions, and the rising demand for decentralized energy resources. Environmental sustainability, supportive regulatory policies, and the growth of electric vehicles (EVs) are also contributing to market growth.

Technological Advancements: Ongoing innovations in flywheel energy storage systems focus on improving energy density, system efficiency, and reducing costs are facilitating the market growth. Research and development (R&D) efforts are also directed toward enhancing materials, reducing system size, and increasing overall performance.

Industry Applications: Flywheel energy storage finds applications in UPS, distributed energy generation, transport, data centers, and residential energy storage.

Key Market Trends: Market trends include the use of flywheels in grid stabilization, support for renewable energy integration, and their role in enhancing energy resilience. Flywheels are increasingly being adopted in data centers for seamless power supply during outages, and they contribute to regenerative braking in the transportation sector.

Geographical Trends: North America leads the market, which can be attributed to grid modernization and a robust data center industry. However, Asia Pacific is emerging as a fast-growing market on account of renewable energy expansion and transportation electrification.

Competitive Landscape: Key players are investing in research and development (R&D) to offer diverse solutions for grid stabilization, renewable integration, and UPS applications, contributing to the growth and innovation in the industry.

Challenges and Opportunities: Challenges include the need for further cost reduction, addressing rare earth material dependency, and increasing awareness among potential customers. Nonetheless, opportunities for flywheels for grid stability, expanding into emerging markets, and enhancing the sustainability of flywheel technology to meet growing environmental concerns are projected to overcome these challenges.

Flywheel Energy Storage Market Trends:

Increasing renewable energy integration

The proliferation of renewable energy sources like wind and solar power is propelling the growth of the market. With the global focus on lowering carbon emissions and transitioning to sustainable energy, the intermittent nature of renewables presents a unique challenge. Flywheel energy storage systems are emerging as a crucial enabler in this transition. Renewable energy generation is inherently variable, depending on factors like weather conditions and daylight hours. Flywheel energy storage systems address this variability by capturing excess energy efficiently when it is available and releasing it when demand peaks or when renewable sources are momentarily inactive. Their rapid response times and high energy density make them ideal for smoothing out fluctuations in renewable energy output. As nations strive to meet ambitious clean energy targets, the role of flywheel energy storage in facilitating the integration of renewables cannot be overstated. By acting as a buffer between energy generation and consumption, these systems enhance grid stability, reduce curtailment of excess renewable power, and contribute to a more reliable and sustainable energy infrastructure.

Grid modernization initiatives

Grid modernization initiatives are gaining traction around the world as governments and utilities aim to enhance the reliability, efficiency, and resilience of power distribution systems. Within this transformation, flywheel energy storage systems are assuming a pivotal role. Grid modernization encompasses the deployment of advanced technologies to monitor and control electricity flow more effectively. Flywheels are instrumental in stabilizing the grid by regulating voltage and frequency, ensuring a consistent and dependable power supply. Their ability to respond within milliseconds to grid disturbances, such as abrupt load changes or voltage fluctuations, plays a vital role in maintaining the stability of modernized grids. This responsiveness prevents disruptions and power quality issues, contributing to a more robust and efficient electrical infrastructure.

Rising demand for uninterrupted power supply (UPS)

In an increasingly digitalized world where uninterrupted power supply (UPS) is paramount, the demand for reliable energy storage solutions is on a rise. Industries, such as data centers, healthcare facilities, telecommunications, and manufacturing, depend on seamless power continuity to prevent costly downtime and data loss. Flywheel energy storage systems are gaining prominence in UPS applications due to their exceptional reliability and performance.

Flywheels store kinetic energy in a rapidly spinning rotor, which can be instantaneously converted into electrical power in the event of grid interruptions. Unlike traditional battery-based UPS systems, flywheels have a longer operational lifespan, require minimal maintenance, and are more environment friendly. These advantages make flywheel-based UPS solutions the preferred choice for businesses and organizations that cannot tolerate even momentary power disruptions or data integrity risks.

Advancements in energy storage technology

The continual advancements of energy storage technology are propelling the growth of the market. Flywheel systems are experiencing notable improvements on account of the development of high-performance materials, enhanced energy conversion efficiency, and increased energy storage capacity. These technological innovations are making flywheel energy storage systems more efficient and cost-effective. Advancements in composite materials are enabling flywheels to store and release energy more efficiently. This is expanding the range of applications, ranging from uninterruptible power supply (UPS) to grid stabilization, where flywheels can be deployed effectively. Furthermore, ongoing research and development (R&D) efforts are focused on reducing the size and weight of flywheel systems, making them more compact and easier to integrate into various environments. These advancements are helping in making flywheel energy storage a more attractive choice for a broader range of industries and applications.

Environmental sustainability and regulatory policies

The growing concerns about environmental sustainability and stringent regulatory policies and regulations aimed at lowering greenhouse gas emissions are driving the adoption of flywheel energy storage solutions. Flywheels are inherently eco-friendly compared to traditional energy storage technologies. Unlike batteries that contain hazardous materials, flywheel systems are environmentally benign and produce zero emissions during operation. This complements the global push towards cleaner energy solutions and sustainability. As governments and industries strive to meet carbon reduction targets, flywheel energy storage is gaining favor for its green credentials. Furthermore, many regions are implementing regulations that encourage or require the integration of energy storage systems, such as flywheels, into the power grid. These policies aim to enhance grid reliability, reduce transmission losses, and support the addition of renewable energy sources. Incentives and subsidies are often provided to promote the deployment of energy storage technologies, further driving the market for flywheels.

Flywheel Energy Storage Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global, regional, and country levels for 2024-2032. Our report has categorized the market based on application.

Breakup by Application:

Uninterruptible Power Supply (UPS)

Distributed Energy Generation

Transport

Data Centers

Others

Uninterruptible power supply (UPS) accounts for the majority of the market share

The report has provided a detailed breakup and analysis of the market based on the application. This includes uninterruptible power supply (UPS), distributed energy generation, transport, data centers, and others. According to the report, uninterruptible power supply (UPS) represented the largest segment.

The uninterruptible power supply (UPS) plays a pivotal role in flywheel systems and provide instantaneous backup power to industries where uninterrupted operations are imperative. UPS applications are prevalent in data centers, healthcare facilities, telecommunications, and financial institutions. Flywheel-based UPS solutions offer advantages, such as rapid response times, longer operational lifespan, reduced maintenance costs, and environmental sustainability, making them the appropriate choice to safeguard against power interruptions and ensure uninterrupted workflow.

The distributed energy generation segment is a significant and growing application area for flywheel energy storage. As the world moves towards decentralized energy solutions, flywheels play a crucial role in supporting distributed energy resources like solar panels and wind turbines. These systems help store excess energy generated locally and release it when need exceeds supply or during intermittent generation periods. Flywheels enhance energy reliability in microgrids, residential solar installations, and remote off-grid locations, contributing to grid stability and reducing reliance on centralized power sources.

The transport sector is another emerging application for flywheel energy storage. Flywheels are being incorporated into various transportation modes, including buses and trains, to capture and store energy during braking and deceleration, which can then be used to assist in acceleration or power onboard systems. This regenerative braking technology helps reduce energy consumption and emissions in the transportation industry, making it a promising segment for flywheel adoption, especially in urban transit systems.

Data centers represent a niche but critical application for flywheel energy storage. These facilities require extremely reliable power to ensure continuous data processing and prevent data loss. Flywheel-based UPS systems provide a seamless transition to backup power during grid disturbances, bridging the gap until backup generators kick in. Data center operators value flywheels for their rapid response, high energy density, and reduced maintenance requirements, as they help maintain uninterrupted operations in this technology-dependent sector.

Breakup by Region:

North America

United States

Canada

Asia-Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

North America leads the market, accounting for the largest flywheel energy storage market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

The North America flywheel energy storage market is driven by improving grid reliability and integrating renewable energy sources. Flywheel energy storage systems play a vital role in these initiatives, helping to stabilize the grid and enhance its resilience.

Asia Pacific maintains a strong presence driven by the demand for reliable power. Flywheels are employed to stabilize microgrids and support critical infrastructure in growing urban areas.

Europe stands as another key region in the market, driven by the increasing focus on improving energy efficiency in electric transport.

Latin America exhibits growing potential in the flywheel energy storage market, fueled by the increasing demand for cost-effective solutions for reliable energy access, addressing electricity gaps.

The Middle East and Africa region show a developing market for flywheel energy storage, driven by the increasing focus on producing uninterrupted freshwater.

Leading Key Players in the Flywheel Energy Storage Industry:

Key players in the flywheel energy storage market are actively engaged in several strategic initiatives to capitalize on the growing demand and drive technological advancements. These initiatives include research and development (R&D) efforts to improve energy density, reduce system costs, and enhance overall efficiency. They are also expanding their global reach by forming partnerships and collaborations to access new markets and customer segments. Moreover, many players are focusing on sustainability by developing eco-friendly flywheel systems and emphasizing their environmental benefits. Additionally, marketing efforts are aimed at educating potential customers about the advantages of flywheel energy storage, especially in applications, such as uninterruptible power supply (UPS), renewable energy integration, and grid stabilization, to further expand their market presence and influence.

The market research report has provided a comprehensive analysis of the competitive landscape. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

ABB Ltd.

Adaptive Balancing Power GmbH

Amber Kinetics Inc.

Beacon Power LLC

Calnetix Technologies LLC

Energiestro

Langley Holdings plc

Oxto Energy

Phillips Service Industries Inc.

Schwungrad Energie Limited

Siemens Aktiengesellschaft

Stornetic GmbH

Teraloop Oy

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

Latest News:

July 2021: Amber Kinetics Inc. and De La Salle University launched their project "Integrated Flywheel Storage Management System," a research under the DOST CRADLE (Collaborative Research and Development to Leverage Philippine Economy) program, which can improve the viability of off-grid energy systems by examining several applications with renewable energy and creating a management system to incorporate the flywheel technology.

Key Questions Answered in This Report

  • 1. How big is the global flywheel energy storage market?
  • 2. What is the expected growth rate of the global flywheel energy storage market during 2024-2032?
  • 3. What are the key factors driving the global flywheel energy storage market?
  • 4. What has been the impact of COVID-19 on the global flywheel energy storage market?
  • 5. What is the breakup of the global flywheel energy storage market based on the application?
  • 6. What are the key regions in the global flywheel energy storage market?
  • 7. Who are the key players/companies in the global flywheel energy storage market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Flywheel Energy Storage Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Application

  • 6.1 Uninterruptible Power Supply (UPS)
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Distributed Energy Generation
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Transport
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Data Centers
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Others
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast

7 Market Breakup by Region

  • 7.1 North America
    • 7.1.1 United States
      • 7.1.1.1 Market Trends
      • 7.1.1.2 Market Forecast
    • 7.1.2 Canada
      • 7.1.2.1 Market Trends
      • 7.1.2.2 Market Forecast
  • 7.2 Asia-Pacific
    • 7.2.1 China
      • 7.2.1.1 Market Trends
      • 7.2.1.2 Market Forecast
    • 7.2.2 Japan
      • 7.2.2.1 Market Trends
      • 7.2.2.2 Market Forecast
    • 7.2.3 India
      • 7.2.3.1 Market Trends
      • 7.2.3.2 Market Forecast
    • 7.2.4 South Korea
      • 7.2.4.1 Market Trends
      • 7.2.4.2 Market Forecast
    • 7.2.5 Australia
      • 7.2.5.1 Market Trends
      • 7.2.5.2 Market Forecast
    • 7.2.6 Indonesia
      • 7.2.6.1 Market Trends
      • 7.2.6.2 Market Forecast
    • 7.2.7 Others
      • 7.2.7.1 Market Trends
      • 7.2.7.2 Market Forecast
  • 7.3 Europe
    • 7.3.1 Germany
      • 7.3.1.1 Market Trends
      • 7.3.1.2 Market Forecast
    • 7.3.2 France
      • 7.3.2.1 Market Trends
      • 7.3.2.2 Market Forecast
    • 7.3.3 United Kingdom
      • 7.3.3.1 Market Trends
      • 7.3.3.2 Market Forecast
    • 7.3.4 Italy
      • 7.3.4.1 Market Trends
      • 7.3.4.2 Market Forecast
    • 7.3.5 Spain
      • 7.3.5.1 Market Trends
      • 7.3.5.2 Market Forecast
    • 7.3.6 Russia
      • 7.3.6.1 Market Trends
      • 7.3.6.2 Market Forecast
    • 7.3.7 Others
      • 7.3.7.1 Market Trends
      • 7.3.7.2 Market Forecast
  • 7.4 Latin America
    • 7.4.1 Brazil
      • 7.4.1.1 Market Trends
      • 7.4.1.2 Market Forecast
    • 7.4.2 Mexico
      • 7.4.2.1 Market Trends
      • 7.4.2.2 Market Forecast
    • 7.4.3 Others
      • 7.4.3.1 Market Trends
      • 7.4.3.2 Market Forecast
  • 7.5 Middle East and Africa
    • 7.5.1 Market Trends
    • 7.5.2 Market Breakup by Country
    • 7.5.3 Market Forecast

8 SWOT Analysis

  • 8.1 Overview
  • 8.2 Strengths
  • 8.3 Weaknesses
  • 8.4 Opportunities
  • 8.5 Threats

9 Value Chain Analysis

10 Porters Five Forces Analysis

  • 10.1 Overview
  • 10.2 Bargaining Power of Buyers
  • 10.3 Bargaining Power of Suppliers
  • 10.4 Degree of Competition
  • 10.5 Threat of New Entrants
  • 10.6 Threat of Substitutes

11 Price Analysis

12 Competitive Landscape

  • 12.1 Market Structure
  • 12.2 Key Players
  • 12.3 Profiles of Key Players
    • 12.3.1 ABB Ltd
      • 12.3.1.1 Company Overview
      • 12.3.1.2 Product Portfolio
      • 12.3.1.3 Financials
      • 12.3.1.4 SWOT Analysis
    • 12.3.2 Adaptive Balancing Power GmbH
      • 12.3.2.1 Company Overview
      • 12.3.2.2 Product Portfolio
      • 12.3.2.3 Financials
    • 12.3.3 Amber Kinetics Inc.
      • 12.3.3.1 Company Overview
      • 12.3.3.2 Product Portfolio
    • 12.3.4 Beacon Power LLC
      • 12.3.4.1 Company Overview
      • 12.3.4.2 Product Portfolio
    • 12.3.5 Calnetix Technologies LLC
      • 12.3.5.1 Company Overview
      • 12.3.5.2 Product Portfolio
    • 12.3.6 Energiestro
      • 12.3.6.1 Company Overview
      • 12.3.6.2 Product Portfolio
    • 12.3.7 Langley Holdings plc
      • 12.3.7.1 Company Overview
      • 12.3.7.2 Product Portfolio
      • 12.3.7.3 Financials
    • 12.3.8 Oxto Energy
      • 12.3.8.1 Company Overview
      • 12.3.8.2 Product Portfolio
    • 12.3.9 Phillips Service Industries Inc.
      • 12.3.9.1 Company Overview
      • 12.3.9.2 Product Portfolio
    • 12.3.10 Schwungrad Energie Limited
      • 12.3.10.1 Company Overview
      • 12.3.10.2 Product Portfolio
    • 12.3.11 Siemens Aktiengesellschaft
      • 12.3.11.1 Company Overview
      • 12.3.11.2 Product Portfolio
      • 12.3.11.3 Financials
      • 12.3.11.4 SWOT Analysis
    • 12.3.12 Stornetic GmbH
      • 12.3.12.1 Company Overview
      • 12.3.12.2 Product Portfolio
    • 12.3.13 Teraloop Oy
      • 12.3.13.1 Company Overview
      • 12.3.13.2 Product Portfolio
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦