½ÃÀ庸°í¼­
»óǰÄÚµå
1560960

À̿ ±³È¯¸· ½ÃÀå º¸°í¼­ : ÀüÇÏ, Àç·á, ±¸Á¶, ¿ëµµ, Áö¿ªº°(2024-2032³â)

Ion Exchange Membrane Market Report by Charge, Material, Structure, Application, and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 137 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ À̿ ±³È¯¸· ½ÃÀå ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 9¾ï 7,410¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº 2024-2032³â ¼ºÀå·ü(CAGR)Àº 3.8%¸¦ º¸À̸ç, 2032³â¿¡´Â 13¾ï 8,170¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. Æó¼ö ó¸® ÇÁ·ÎÁ§Æ® Áõ°¡, ÀÇ·á ¹× ¿¡³ÊÁö ÀúÀå ºÐ¾ß¿¡¼­ÀÇ »ç¿ë Áõ°¡, È­ÇÐ »ê¾÷ÀÇ ¹ßÀüÀº ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÀϺÎÀÔ´Ï´Ù.

½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â Æó¼ö ó¸® ÇÁ·ÎÁ§Æ® Áõ°¡

½ÅÈï ±¹°¡ÀÇ Æó¼öó¸® ÇÁ·ÎÁ§Æ® Áõ°¡´Â À̿±³È¯¸· ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. »ó¼öµµ ó¸®, »ê¾÷ Æó¼ö ó¸®, È£±â¼º ó¸® ¹× Çø±â¼º ó¸®¿Í °°Àº ¿À¿° ó¸® ´ëÃ¥¿¡ ´ëÇÑ ¼±È£µµ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è¿¡¼­ ±ú²ýÇÑ ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Æó¼ö ó¸®ÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼öÁú°ú °Ç°­¿¡ ´ëÇÑ °³ÀÎÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ½ÃÀå ±¸Á¶, ÁÖ¿ä ±â¾÷ÀÇ ½ÃÀå Á¡À¯À², ÁÖ¿ä ±â¾÷ ½ÃÀå »óȲ ºÐ¼®, ÁÖ¿ä ¼º°ø Àü·«, °æÀï ´ë½Ãº¸µå, ±â¾÷ Æò°¡ »çºÐ¸é µî °æÀï ºÐ¼®À» ´Ù·ç°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä ±â¾÷ÀÇ »ó¼¼ÇÑ ÇÁ·ÎÆÄÀϵµ ¼ö·ÏµÇ¾î ÀÖ½À´Ï´Ù. ½ÃÀå ±¸Á¶´Â Àû´çÈ÷ ´ÜÆíÈ­µÇ¾î ÀÖÀ¸¸ç, ±â¼ú Çõ½Å Áõ°¡¿Í ¼Ò±Ô¸ð Áö¿ª ±â¾÷ÀÇ ÃâÇöÀ¸·Î ÀÎÇØ ¸¹Àº ¼¼°è ¹× Áö¿ª ±â¾÷ÀÌ ¾÷°è¿¡¼­ »ç¾÷À» ¿î¿µÇϰí ÀÖ½À´Ï´Ù. À̿±³È¯¸· »ê¾÷Àº Á¦Ç° Â÷º°È­¿Í ³·Àº Àüȯ ºñ¿ëÀ¸·Î ÀÎÇØ ½Å±Ô ÁøÀÔÀÌ Àû½À´Ï´Ù.

À̿±³È¯¸·À̶õ?

À̿ ±³È¯¸·(IEM)Àº ¼öó¸® Ç÷£Æ®¿¡¼­ ¾×ü¿¡¼­ ¾çÀ̿°ú À½ÀÌ¿ÂÀ» ºÐ¸®Çϵµ·Ï ¼³°èµÈ ¾ãÀº ¹ÝÅõ°ú¼º ½ÃÆ® ¶Ç´Â Çʸ§ÀÔ´Ï´Ù. À̿ ±³È¯¸·Àº À̿ Á¾¿¡ µû¶ó À¯Ã¼¿¡¼­ À̿¼º ¹°ÁúÀ» ºÐ¸®, ³óÃà ¹× Á¦°Å ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿°¼Ò-¾ËÄ®¸®, źȭ¼ö¼Ò, °úºÒȭź¼Ò, ¹«±â, º¹ÇÕ ¹× ºÎºÐÀûÀ¸·Î ÇҷΰÕÈ­µÈ º¯ÇüÀ¸·Î ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ À̿ ±³È¯¸·¿¡ ºñÇØ ºñ¿ë È¿À²ÀûÀÌ¸ç ¿ëÁ¸ ¹«±â À̿ Á¦°Å ¹× ¼öÁö Àç»ý¿¡ µµ¿òÀÌ µÇ¸ç, IEMÀº ¹°¿¡¼­ Ä®½·, ¸¶±×³×½· ¹× À¯ÇØ ±Ý¼ÓÀ» Á¦°ÅÇϱâ À§ÇÑ Àü±â ºÐÇØ, Å©·Î¸¶Åä±×·¡ÇÇ ºÐ¸® ¹× ¿¬¼ö °øÁ¤¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19´Â À̿±³È¯¸· »ê¾÷¿¡ ½É°¢ÇÑ ¹®Á¦¸¦ ÀÏÀ¸ÄÑ ¸¹Àº ±¹°¡¿¡ Àü·Ê ¾ø´Â µµÀüÀ» ¾È°ÜÁÖ¾ú½À´Ï´Ù. »çȸÀû °Å¸®µÎ±â ±Ô¹üÀÇ ½ÃÇà°ú ºÀ¼â Á¶Ä¡·Î ÀÎÇØ ±â¾÷Àº »ý»ê ´É·ÂÀ» Ãà¼ÒÇÏ°í »ý»ê °øÁ¤À» Áß´ÜÇØ¾ß Çß½À´Ï´Ù. ¶ÇÇÑ Äڷγª¹ÙÀÌ·¯½º°¡ Àü ¼¼°è¿¡¼­ È®»êµÇ¸é¼­ ³ëµ¿·Â ºÎÁ· Çö»óÀÌ ¹ß»ýÇß½À´Ï´Ù. ¿î¼Û Á¦ÇÑÀ¸·Î ÀÎÇØ È­ÇÐ, Æó¼ö, ¼®À¯ ¹× °¡½º µî ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ë »ê¾÷ÀÌ °¡µ¿À» Áß´ÜÇϸ鼭 À̿±³È¯¸·¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ ±¹°æ °£ À̵¿ÀÌ Á¦ÇѵǸ鼭 À̿±³È¯¸·ÀÇ ¼öÃâÀÔ¿¡ Â÷ÁúÀ» ºú°í ÀÖ½À´Ï´Ù. ¿©·¯ °Ë¹®¼Ò¿Í Å͹̳ÎÀÇ µµÀÔÀ¸·Î ¿î¼Û ºñ¿ëÀÌ Áõ°¡ÇÏ¿© Àüü °ø±Þ¿¡ ¾à°£ÀÇ Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. ÀÌ ¿Ü¿¡µµ »óǰ°ú ¼­ºñ½ºÀÇ À̵¿ÀÌ Á¦ÇÑµÇ°í ³ëµ¿·ÂÀÌ ºÎÁ·ÇÏ¿© ¸¹Àº ±â¾÷ÀÌ ¸·´ëÇÑ ¼Õ½Ç¿¡ Á÷¸éÇß½À´Ï´Ù. ±×·¯³ª ºÎºÐÀûÀÎ »ç¾÷ Àç°³·Î ÀÎÇØ À̿±³È¯¸·¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¾ú½À´Ï´Ù. ±× °á°ú, COVID-19 ÀÌÈÄ °³ÀÎ À§»ý°ú ¾ÈÀü¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ Àü ¼¼°è¿¡¼­ À̿±³È¯¸·¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

À̿±³È¯¸· ½ÃÀå µ¿Çâ :

ÇöÀç ±×¸° ¼ö¼Ò »ý»êÀ» À§ÇÑ À̿±³È¯¸·¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ °¢±¹ÀÇ Á¤ºÎ ±â°üÀº ±ú²ýÇÑ ÈÞ´ë¿ë ¹°ÀÇ Ã¤ÅÃÀ» Àå·ÁÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. À̿ʹ º°µµ·Î, ½ÅºÎÀüÁõÀ» Ä¡·áÇϰí ü³» µ¶¼Ò¿Í ³ëÆó¹°À» Á¦°ÅÇϱâ À§ÇØ ÇコÄÉ¾î ºÐ¾ß¿¡¼­ IEMÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ ½ÃÀå Àü¸ÁÀ» ¹à°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¡¼º¼Ò´Ù, °¡¼º Ä®·ý, ¿°¼Ò ¹× ¼ö¼ÒÀÇ ±âÃÊ È­ÇÐÁ¦Ç°À» »ý»êÇϱâ À§ÇØ È­ÇÐ »ê¾÷¿¡¼­ IEM¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ´õºÒ¾î, ¾ÈÀüÇϰí À§»ýÀûÀÎ ¹°ÀÇ ¼Òºñ¿Í »ç¿ëÀ» Àå·ÁÇϱâ À§ÇØ °¢±¹¿¡¼­ Æó¼ö ó¸® ÇÁ·ÎÁ§Æ®°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü ¼¼°è ¿©·¯ »ê¾÷ ºÐ¾ß¿¡¼­ È¿°úÀûÀÎ Æó¼ö ¹× ¹æ»ç¼º Æó¾× ó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó Æó¼ö¿¡¼­ °æµµ, Áß±Ý¼Ó ¹× ºÒ¼ø¹°À» Á¦°ÅÇÏ´Â IEMÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¾÷°è ÅõÀÚÀڵ鿡°Ô À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·é ÁÖ¿ä Áú¹®

  • ¼¼°è À̿±³È¯¸· ½ÃÀåÀº Áö±Ý±îÁö ¾î¶»°Ô ¼ºÀåÇØ ¿Ô´Â°¡?
  • ¼¼°è À̿±³È¯¸· ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ, ¾ïÁ¦¿äÀÎ ¹× ±âȸ´Â ¹«¾ùÀΰ¡?
  • ÃËÁø¿äÀÎ, ¾ïÁ¦¿äÀÎ, ±âȸ°¡ ¼¼°è À̿±³È¯¸· ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâÀº?
  • ÁÖ¿ä Áö¿ª ½ÃÀåÀº?
  • À̿±³È¯¸· ½ÃÀå¿¡¼­ °¡Àå ¸Å·ÂÀûÀÎ ±¹°¡´Â ¾îµðÀϱî?
  • ¿ä±Ýº° ½ÃÀå ºÐ¼®Àº?
  • À̿±³È¯¸· ½ÃÀå¿¡¼­ °¡Àå ¸Å·ÂÀûÀÎ ÃæÀüÀº?
  • ¼ÒÀ纰 ½ÃÀå ÇöȲÀº?
  • À̿±³È¯¸· ½ÃÀå¿¡¼­ °¡Àå ¸Å·ÂÀûÀÎ ¼ÒÀç´Â?
  • ±¸Á¶º° ½ÃÀå ºÐ¼®Àº?
  • À̿±³È¯¸· ½ÃÀå¿¡¼­ °¡Àå ¸Å·ÂÀûÀÎ ±¸Á¶´Â?
  • ¿ëµµº° ½ÃÀå ÇöȲÀº?
  • À̿±³È¯¸· ½ÃÀå¿¡¼­ °¡Àå ¸Å·ÂÀûÀÎ ¿ëµµ´Â?
  • ¼¼°è À̿±³È¯¸· ½ÃÀåÀÇ °æÀï ±¸µµ´Â?
  • ¼¼°è À̿±³È¯¸· ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷Àº?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ ¾îÇÁ·ÎÄ¡
    • Åé´Ù¿î ¾îÇÁ·ÎÄ¡
  • Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ¼­·Ð

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ À̿ ±³È¯¸· ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ³»¿ª : ÀüÇϺ°

  • ¾çÀÌ¿Â
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • À½ÀÌ¿Â
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¾ç¼º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹ÙÀÌÆú¶ó
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¸ðÀÚÀÌÅ©
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ³»¿ª : Àç·áº°

  • źȭ¼ö¼Ò¸·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÆÛÇ÷ç¿À·Î Ä«º»¸·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹«±â¸·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • º¹ÇÕ¸·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ºÎºÐ ÇҷΰÕÈ­¸·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ³»¿ª : ±¸Á¶º°

  • ºÒ±ÕÀϸ·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±ÕÁú¸·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ³»¿ª : ¿ëµµº°

  • Àü±âÅõ¼®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÀüÇØ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Å©·Î¸¶Åä±×·¡ÇÇ ºÐ¸®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ´ã¼öÈ­
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Æó¼ö ó¸®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹æ»ç¼º ¾×ü Æó±â¹° ó¸®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦10Àå ½ÃÀå ³»¿ª : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ³»¿ª : ±¹°¡º°
    • ½ÃÀå ¿¹Ãø

Á¦11Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦13Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀïÀÇ Á¤µµ
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦14Àå °¡°Ý ºÐ¼®

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ÀÇ °³¿ä
    • 3M Company
    • AGC ENGINEERING Co. Ltd
    • Asahi Kasei Corporation
    • Dioxide Materials
    • Dow Inc.
    • DuPont de Nemours Inc.
    • Fujifilm Holdings Corporation
    • General Electric Company
    • Lanxess AG
    • Merck KGaA
    • ResinTech Inc.
    • Saltworks Technologies Inc.
    • Toray Industries Inc.
KSA 24.10.04

The global ion exchange membrane market size reached US$ 974.1 Million in 2023. Looking forward, IMARC Group expects the market to reach US$ 1,381.7 Million by 2032, exhibiting a growth rate (CAGR) of 3.8% during 2024-2032. The growing wastewater treatment projects, increasing use in the healthcare and energy storage sectors, and rising advancements in the chemical industry represent some of the key factors driving the market.

Rising Wastewater Treatment Projects Augmenting Market Growth

The rising wastewater treatment projects in developing countries represent one of the primary drivers of the ion exchange membrane market. There is a rise in the preference toward pollution treatment measures, such as water and industrial wastewater treatments, aerobic treatment, and anaerobic treatment. In addition, there is an increase in the utilization of wastewater treatment due to the rising demand for clean water around the world. Moreover, the growing awareness about water quality and health among individuals is positively influencing the market.

Competitive analysis such as market structure, market share by key players, player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided. The market structure is moderately fragmented with the presence of a large number of global and regional players operating in the industry due to the increase in innovations and emergence of small regional players. The volume of new entrants is low in the ion exchange membrane industry on account of the low product differentiation and switching costs.

What is an Ion Exchange Membrane?

Ion exchange membrane (IEM) is a thin semipermeable sheet or film designed for the separation of cations and anions from fluids in water treatment plants. It relies on ionic species that enable the separation, concentration, and exclusion of ionic material from the fluid flow. It is widely available as chlor-alkali, hydrocarbon, perfluorocarbon, inorganic, and composite and partially halogenated variants. It is more cost-effective and assists in removing dissolved inorganic ions and regenerating resins compared to traditional ion exchange membranes. IEM is also utilized in electrolysis, chromatographic separations, and water softening processes for removing the calcium, magnesium, and toxic metals from the water.

COVID-19 Impact:

The COVID-19 pandemic outbreak has caused a severe problem for the ion exchange membrane industry and imposed unprecedented challenges on numerous countries. The enforcement of social distancing norms and lockdown measures caused players to downscale capacity or temporarily pause the production process. In addition, the shortage of labor was witnessed due to the widespread coronavirus across the globe. Due to the transportation restrictions, various end-use industries, such as chemical, wastewater, and oil and gas, shut down their operations, which declined the demand for ion exchange membranes. Moreover, the limited cross-border movement has hampered the exports and imports of ion exchange membranes. The introduction of multiple checks and terminals increased the transportation cost and caused a slight delay in overall supply. Apart from this, many players faced huge losses due to the restrictions on the movement of goods and services and the shortage of labor. However, amid partial business reopening, the demand for ion exchange membranes was expected to increase. As a result, post-pandemic, due to the rising awareness among individuals about enhanced safety and health, the demand for ion exchange membranes is rising worldwide.

Ion Exchange Membrane Market Trends:

At present, the increasing demand for IEMs to produce green hydrogen represents one of the major factors influencing the market positively. In addition, governing agencies of various countries are encouraging the adoption of clean and portable water, which is strengthening the growth of the market. Apart from this, the growing utilization of IEMs in the healthcare sector to treat renal failure and remove toxins and body waste among individuals is offering a positive market outlook. Additionally, the rising demand for IEMs in the chemical industry for manufacturing caustic soda, caustic potash, and chlorine and hydrogen-basic chemical products is contributing to the growth of the market. Besides this, the increasing wastewater treatment projects in various countries to encourage the consumption and usage of safe and hygienic water are supporting the growth of the market. Moreover, there is a rise in the need for effective wastewater and radioactive liquid waste treatment solutions across numerous industries around the world. In line with this, the increasing adoption of IEMs, as they assist in removing hardness, heavy metals, and impurities from wastewater, is offering lucrative growth opportunities to industry investors.

Key Market Segmentation:

IMARC Group provides an analysis of the key trends in each sub-segment of the global ion exchange membrane market report, along with forecasts at the global, regional and country level from 2024-2032. Our report has categorized the market based on charge, material, structure and application.

Charge Insights:

  • Cation
  • Anion
  • Amphoteric
  • Bipolar
  • Mosaic

The report has provided a detailed breakup and analysis of the ion exchange membrane market based on the charge. This includes cation, anion, amphoteric, bipolar, and mosaic. According to the report, anion represented the largest segment, as it provides resistivity from alkali, oxidation, chlorine, and acts as a diffusion dialysis for acid recovery. In addition, the increasing demand for water purification and wastewater treatment is positively influencing the market.

Material Insights:

  • Hydrocarbon Membrane
  • Perfluorocarbon Membrane
  • Inorganic Membrane
  • Composite Membrane
  • Partially Halogenated Membrane

A detailed breakup and analysis of the ion exchange membrane market based on the material has also been provided in the report. This includes hydrocarbon membrane, perfluorocarbon membrane, inorganic membrane, composite membrane, and partially halogenated membrane. According to the report, inorganic membrane accounted for the largest market share, as it offers stability to high temperatures and to wetting-drying cycles over organic membranes. Moreover, the rising adoption of inorganic membrane to enhance conductivity of the membranes and prevent their dehydration under high temperature is impelling the market growth.

Structure Insights:

  • Heterogeneous Membrane
  • Homogenous Membrane

A detailed breakup and analysis of the ion exchange membrane market based on the structure has also been provided in the report. This includes heterogeneous membrane and homogenous membrane. According to the report, homogenous accounted for the largest market share, as it has electrochemical properties with lower mechanical characteristics. Additionally, the rising utilization of homogenous membrane to remove high sulphate concentrate from water is contributing to the market growth.

Application Insights:

  • Electrodialysis
  • Electrolysis
  • Chromatographic Separation
  • Desalination
  • Wastewater Treatment
  • Radioactive Liquid Waste Treatment

A detailed breakup and analysis of the ion exchange membrane market based on the application has also been provided in the report. This includes electrodialysis, electrolysis, chromatographic separation, desalination, wastewater treatment, and radioactive liquid waste treatment. According to the report, electrolysis accounted for the largest market share due to the increasing utilization in chemical processing, chloralkali and hydrogen production, and metal extraction. In addition, there is a rise in the demand for electrolysis due to the increasing production of chlorine, caustic soda, and other chlorine and sodium derived products.

Regional Insights:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others) was the largest market for ion exchange membrane. Some of the factors driving the Asia Pacific ion exchange membrane market included the favorable government policies, increasing geriatric population, and thriving medical device industry. In addition to this, the rising demand for ion exchange membranes to treat various kidney related diseases among individuals is bolstering the growth of the market in the region.

Competitive Landscape:

The report has also provided a comprehensive analysis of the competitive landscape in the global ion exchange membrane market. Some of the companies covered in the report include:

  • 3M Company
  • AGC ENGINEERING Co. Ltd
  • Asahi Kasei Corporation
  • Dioxide Materials
  • Dow Inc.
  • DuPont de Nemours Inc.
  • Fujifilm Holdings Corporation
  • General Electric Company
  • Lanxess AG
  • Merck KGaA
  • ResinTech Inc.
  • Saltworks Technologies Inc.
  • Toray Industries Inc.

Please note that this only represents a partial list of companies, and the complete list has been provided in the report.

Key Questions Answered in This Report:

  • How has the global ion exchange membrane market performed so far, and how will it perform in the coming years?
  • What are the drivers, restraints, and opportunities in the global ion exchange membrane market?
  • What is the impact of each driver, restraint, and opportunity on the global ion exchange membrane market?
  • What are the key regional markets?
  • Which countries represent the most attractive ion exchange membrane market?
  • What is the breakup of the market based on the charge?
  • Which is the most attractive charge in the ion exchange membrane market?
  • What is the breakup of the market based on the material?
  • Which is the most attractive material in the ion exchange membrane market?
  • What is the breakup of the market based on the structure?
  • Which is the most attractive structure in the ion exchange membrane market?
  • What is the breakup of the market based on the application?
  • Which is the most attractive application in the ion exchange membrane market?
  • What is the competitive structure of the global ion exchange membrane market?
  • Who are the key players/companies in the global ion exchange membrane market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Ion Exchange Membrane Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Charge

  • 6.1 Cation
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Anion
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Amphoteric
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Bipolar
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Mosaic
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast

7 Market Breakup by Material

  • 7.1 Hydrocarbon Membrane
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Perfluorocarbon Membrane
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Inorganic Membrane
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Composite Membrane
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Partially Halogenated Membrane
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast

8 Market Breakup by Structure

  • 8.1 Heterogeneous Membrane
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Homogenous Membrane
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast

9 Market Breakup by Application

  • 9.1 Electrodialysis
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Electrolysis
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Chromatographic Separation
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Desalination
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast
  • 9.5 Wastewater Treatment
    • 9.5.1 Market Trends
    • 9.5.2 Market Forecast
  • 9.6 Radioactive Liquid Waste Treatment
    • 9.6.1 Market Trends
    • 9.6.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 United States
      • 10.1.1.1 Market Trends
      • 10.1.1.2 Market Forecast
    • 10.1.2 Canada
      • 10.1.2.1 Market Trends
      • 10.1.2.2 Market Forecast
  • 10.2 Asia-Pacific
    • 10.2.1 China
      • 10.2.1.1 Market Trends
      • 10.2.1.2 Market Forecast
    • 10.2.2 Japan
      • 10.2.2.1 Market Trends
      • 10.2.2.2 Market Forecast
    • 10.2.3 India
      • 10.2.3.1 Market Trends
      • 10.2.3.2 Market Forecast
    • 10.2.4 South Korea
      • 10.2.4.1 Market Trends
      • 10.2.4.2 Market Forecast
    • 10.2.5 Australia
      • 10.2.5.1 Market Trends
      • 10.2.5.2 Market Forecast
    • 10.2.6 Indonesia
      • 10.2.6.1 Market Trends
      • 10.2.6.2 Market Forecast
    • 10.2.7 Others
      • 10.2.7.1 Market Trends
      • 10.2.7.2 Market Forecast
  • 10.3 Europe
    • 10.3.1 Germany
      • 10.3.1.1 Market Trends
      • 10.3.1.2 Market Forecast
    • 10.3.2 France
      • 10.3.2.1 Market Trends
      • 10.3.2.2 Market Forecast
    • 10.3.3 United Kingdom
      • 10.3.3.1 Market Trends
      • 10.3.3.2 Market Forecast
    • 10.3.4 Italy
      • 10.3.4.1 Market Trends
      • 10.3.4.2 Market Forecast
    • 10.3.5 Spain
      • 10.3.5.1 Market Trends
      • 10.3.5.2 Market Forecast
    • 10.3.6 Russia
      • 10.3.6.1 Market Trends
      • 10.3.6.2 Market Forecast
    • 10.3.7 Others
      • 10.3.7.1 Market Trends
      • 10.3.7.2 Market Forecast
  • 10.4 Latin America
    • 10.4.1 Brazil
      • 10.4.1.1 Market Trends
      • 10.4.1.2 Market Forecast
    • 10.4.2 Mexico
      • 10.4.2.1 Market Trends
      • 10.4.2.2 Market Forecast
    • 10.4.3 Others
      • 10.4.3.1 Market Trends
      • 10.4.3.2 Market Forecast
  • 10.5 Middle East and Africa
    • 10.5.1 Market Trends
    • 10.5.2 Market Breakup by Country
    • 10.5.3 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 3M Company
      • 15.3.1.1 Company Overview
      • 15.3.1.2 Product Portfolio
      • 15.3.1.3 Financials
      • 15.3.1.4 SWOT Analysis
    • 15.3.2 AGC ENGINEERING Co. Ltd
      • 15.3.2.1 Company Overview
      • 15.3.2.2 Product Portfolio
      • 15.3.2.3 Financials
      • 15.3.2.4 SWOT Analysis
    • 15.3.3 Asahi Kasei Corporation
      • 15.3.3.1 Company Overview
      • 15.3.3.2 Product Portfolio
      • 15.3.3.3 Financials
      • 15.3.3.4 SWOT Analysis
    • 15.3.4 Dioxide Materials
      • 15.3.4.1 Company Overview
      • 15.3.4.2 Product Portfolio
    • 15.3.5 Dow Inc.
      • 15.3.5.1 Company Overview
      • 15.3.5.2 Product Portfolio
      • 15.3.5.3 Financials
      • 15.3.5.4 SWOT Analysis
    • 15.3.6 DuPont de Nemours Inc.
      • 15.3.6.1 Company Overview
      • 15.3.6.2 Product Portfolio
      • 15.3.6.3 Financials
      • 15.3.6.4 SWOT Analysis
    • 15.3.7 Fujifilm Holdings Corporation
      • 15.3.7.1 Company Overview
      • 15.3.7.2 Product Portfolio
      • 15.3.7.3 Financials
      • 15.3.7.4 SWOT Analysis
    • 15.3.8 General Electric Company
      • 15.3.8.1 Company Overview
      • 15.3.8.2 Product Portfolio
      • 15.3.8.3 Financials
      • 15.3.8.4 SWOT Analysis
    • 15.3.9 Lanxess AG
      • 15.3.9.1 Company Overview
      • 15.3.9.2 Product Portfolio
      • 15.3.9.3 Financials
      • 15.3.9.4 SWOT Analysis
    • 15.3.10 Merck KGaA
      • 15.3.10.1 Company Overview
      • 15.3.10.2 Product Portfolio
      • 15.3.10.3 Financials
      • 15.3.10.4 SWOT Analysis
    • 15.3.11 ResinTech Inc.
      • 15.3.11.1 Company Overview
      • 15.3.11.2 Product Portfolio
    • 15.3.12 Saltworks Technologies Inc.
      • 15.3.12.1 Company Overview
      • 15.3.12.2 Product Portfolio
    • 15.3.13 Toray Industries Inc.
      • 15.3.13.1 Company Overview
      • 15.3.13.2 Product Portfolio
      • 15.3.13.3 Financials
      • 15.3.13.4 SWOT Analysis
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦