½ÃÀ庸°í¼­
»óǰÄÚµå
1560966

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå º¸°í¼­ : ¿ÀÆÛ¸µ, µ¥ÀÌÅÍ À¯Çü, µµÀÔ ¸ðµ¨, ±â¾÷ ±Ô¸ð, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº°(2024-2032³â)

Data Warehousing Market Report by Offering, Data Type, Deployment Model, Enterprise Size, End User, and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 136 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 317¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ½ÃÀåÀÌ 2032³â±îÁö 704¾ï ´Þ·¯¿¡ ´ÞÇϸç, 2024-2032³â 9%ÀÇ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë BI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Àü ¼¼°è Á¶Á÷¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍ ¾ç Áõ°¡¿Í ÇÔ²² ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â Áß¿äÇÑ ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå ºÐ¼® :

  • ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀξ÷¹« ¼öÇàÀ» À§ÇÑ ¼öµ¿ ½Ã½ºÅÛ¿¡¼­ ÀÚµ¿ ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÊ¿¡ µû¶ó »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ Àü¿ë ½ºÅ丮Áö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
  • ÁÖ¿ä ½ÃÀå µ¿Çâ : Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼ÇÀÇ ÀαⰡ ³ô¾ÆÁö¸é¼­ ½ÃÀåÀÇ Áß¿äÇÑ ¼ºÀå µ¿·ÂÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼ÇÀº ´Ù¸¥ Ŭ¶ó¿ìµå ¼­ºñ½º ¹× ¿ëµµ°úÀÇ ¿¬°è ¹× ÅëÇÕ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ º¸¾È °­È­ ¹× µ¥ÀÌÅÍ ¾Ïȣȭ¿Í °°Àº Ŭ¶ó¿ìµå ±â¼úÀÇ ¹ßÀüÀ¸·Î ±â¾÷Àº ±â¹Ð µ¥ÀÌÅ͸¦ Ŭ¶ó¿ìµå·Î ÀÌÀüÇÏ´Â µ¥ ´õ ¸¹Àº ÀڽۨÀ» °®°Ô µÇ¾ú½À´Ï´Ù.
  • °æÀï ±¸µµ : ¼¼°èÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷¿¡´Â Actian Corporation(HCL Technologies Limited), Amazon Web Services Inc(Amazon.com Inc), Cloudera Inc., Dell Technologies Inc., Google LLC(Alphabet Inc), Hewlett Packard Enterprise Development L.P., International Business Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP SE, Snowflake Inc, Teradata Corporation µîÀÌ ÀÖ½À´Ï´Ù.
  • Áö¿ªÀû µ¿Çâ : ºÏ¹Ì´Â ±â¼úÀûÀ¸·Î Áøº¸µÈ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ÀÎÇÁ¶ó¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖÀ¸¹Ç·Î Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹ ±â¾÷Àº ¿©·¯ ¾÷Á¾¿¡ °ÉÃÄ ºÐ¼® ¼Ö·ç¼ÇÀ» ºü¸£°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº ºñÁî´Ï½º µ¥ÀÌÅÍ °ü¸®¿¡ ´ëÇÑ Å« ¼ö¿ä¿Í Ŭ¶ó¿ìµå ¼Ö·ç¼Ç ÇÁ·Î¹ÙÀÌ´õ Áõ°¡·Î ÀÎÇØ ½ÃÀå ¼±µµ ±¹°¡·Î °£Áֵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ´Ù¾çÇÑ ±â¾÷ÀÌ µ¥ÀÌÅ͸¦ È¿°úÀûÀ¸·Î °ü¸®Çϰí Ȱ¿ëÇϱâ À§ÇØ °­·ÂÇÑ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç µµÀÔ¿¡ ´ë±Ô¸ð ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.
  • °úÁ¦¿Í ±âȸ: ´Ù¾çÇÑ ¼Ò½º¿¡ °ÉÃÄ Á¤È®Çϰí Àϰü¼º ÀÖ´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ À¯ÁöÇÏ´Â °ÍÀº ¸Å¿ì ¾î·Á¿î ÀÏÀ̸ç, ÀÌ·Î ÀÎÇØ »çÀ̹ö À§Çù ¹× µ¥ÀÌÅÍ À¯Ãâ°ú °°Àº ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ º¸¾È ǰÁú Çâ»ó, ÄÄÇöóÀ̾𽺠Áؼö, ÀÇ»ç°áÁ¤ ÇÁ·Î¼¼½º °­È­¸¦ À§ÇØ ´Ù¾çÇÑ Á¶Á÷µéÀÌ °­·ÂÇÑ µ¥ÀÌÅÍ °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ±â¾÷¿¡°Ô Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå µ¿Çâ :

½º¸¶Æ®ÆùÀÇ ´ëÁßÈ­

¼¼°è µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀÇ ¼ºÀåÀ» ÁÖµµÇÏ´Â °ÍÀº ÁÖ·Î ½º¸¶Æ®Æù°ú ÀÎÅͳݿ¡ Á¢¼ÓÇÏ´Â Àα¸ Áõ°¡·Î, GSMA¿¡ µû¸£¸é 2023³â ÇöÀç Àü ¼¼°è iOS ¹× ¾Èµå·ÎÀÌµå ½º¸¶Æ®ÆùÀº 62¾ï ´ë ÀÌ»óÀ̸ç, 2025³â¿¡´Â 74¾ï ´ë¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺(DW), ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º(BI) ½Ã½ºÅÛ, µ¥ÀÌÅÍ ºÐ¼® ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÄÄÇ»ÅÍ ½Ã½ºÅÛ¿¡¼­ ¸ð¹ÙÀÏ ±â¼ú »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤º¸¹æ¼ÛºÎ¿¡ µû¸£¸é 2022³â 11¿ù ÀεµÀÇ ÈÞ´ëÆù °¡ÀÔÀÚ´Â 12¾ï ¸íÀ» ³Ñ¾î¼¹°í, ±× Áß 6¾ï ¸íÀÌ ½º¸¶Æ®Æù »ç¿ëÀÚ¶ó°í ÇÕ´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ Åë½Å ¿ä±ÝÀÌ »ó´ëÀûÀ¸·Î Àú·ÅÇÑ µ¥´Ù ½º¸¶Æ®ÆùÀÇ º¸±ÞÀ¸·Î °³ÀÎÀÌ ¸ð¹ÙÀÏ ´Ü¸»±â¸¦ ÅëÇØ ¸¹Àº Á¤º¸¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®¸¦ ¼ÒºñÇÏ°ÔµÈ °ÍÀÌ ÁÖ¿ä ¿øÀÎÀ¸·Î ²ÅÈü´Ï´Ù. ÀÌ¿Í ´õºÒ¾î, ÈÞ´ëÆùÀº µ¥ÀÌÅͺ£À̽ºÀÇ ¿ªÇÒÀ» ÇÏ¸ç »ó´çÇÑ ¾çÀÇ »ç¿ëÀÚ µ¥ÀÌÅ͸¦ ÀúÀåÇÏ°í »ç¿ëÀÚÀÇ T&C ½ÂÀο¡ µû¶ó ºÐ¼®ÀÇ ´ë»óÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅʹ Ȱ¼º µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¿¡ ÀÇÇØ Ȱ¿ëµÇ¾î »ç¿ëÀÚÀÇ ¿©·¯ Ư¼ºÀ» ¼öÁýÇÒ ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù »ç¿ëÀÚµéÀº µ¥ÀÌÅÍ ¾×¼¼½º¸¦ À§ÇØ ¹æ´ëÇÑ Å¬¶ó¿ìµå µ¥ÀÌÅͺ£À̽º¸¦ ÇÊ¿ä·Î ÇϹǷΠµ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺ÀÇ µîÀå

´Ù¾çÇÑ »ê¾÷±º¿¡¼­ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¿Í ºÐ¼®ÀÇ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ÀúÀåÇÏ´Â ºÐ¼® ¹× ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ÇÁ·Î¼¼½ºÀÇ ÁßÃß ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó Ŭ¶ó¿ìµå ¼­ºñ½º µµÀÔÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ¹× ºÐ¼® ¹æ¹ý·ÐÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ »ê¾÷¿¡¼­ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç ½ÃÀåÀº ´õ¿í È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ÁÖ¿ä ½ÃÀå ±â¾÷ÀÌ AI¸¦ ÅëÇÕÇÑ Å¬¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î 2023³â 10¿ù mParticle, Inc.´Â Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ȯ°æ°ú ȣȯµÇ´Â ID ¼Ö·ç¼Ç ComposeID¸¦ Ãâ½ÃÇßÀ¸¸ç, ComposeID´Â IDSync¸¦ ±â¹ÝÀ¸·Î ¸ðµç µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³ÀÇ ¸ðµç ID Àü·«À» Áö¿øÇÑ´Ù°í ¹àÇû½À´Ï´Ù. ¸ðµç µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³ÀÇ ¸ðµç ID Àü·«À» Áö¿øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î 2023³â 7¿ù, International Business Machines Corp.(IBM)Àº IBM Db2 WarehouseÀÇ »õ·Î¿î ¾÷µ¥ÀÌÆ®¸¦ ¹ßÇ¥Çß½À´Ï´Ù. Â÷¼¼´ë ¿þ¾îÇϿ콺´Â °í±Þ ij½ÌÀ» Áö¿øÇϴ Ŭ¶ó¿ìµå ¿ÀºêÁ§Æ® ½ºÅ丮Áö¸¦ Ãß°¡ÇÏ¿© ½ºÅ丮Áö ºñ¿ëÀ» 34% Àý°¨Çϰí Äõ¸® ÀÀ´äÀ» 4¹è ´õ ºü¸£°Ô ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÏÀ̺긮µå ¿öÅ© ¸ðµ¨ äÅà Áõ°¡

COVID-19 ÆÒµ¥¹Í ÀÌÈÄ ¿ø°Ý±Ù¹«°¡ ±ÞÁõÇϸ鼭 µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå ¼ö¿ä¿¡ À¯¸®ÇÏ°Ô ÀÛ¿ëÇß½À´Ï´Ù. ÀçÅñٹ«ÀÇ »õ·Î¿î µ¿ÇâÀº Á¶Á÷ÀÌ ±Øº¹ÇØ¾ß ÇÒ »õ·Î¿î º¹ÀâÇÑ °úÁ¦¸¦ ¸¸µé¾î³Â½À´Ï´Ù. ±× °á°ú ±â¾÷Àº Á¡Á¡ ´õ ¸¹Àº ±â¾÷ÀÌ Å¬¶ó¿ìµå ÄÄÇ»ÆÃÀ» äÅÃÇϰí Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ´Ù¾çÇÑ ÇÏÀÌÅ×Å© ´ë±â¾÷ÀÌ ¼­·Î Çù·ÂÇÏ¿© °í¼º´É Ŭ¶ó¿ìµå µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2022³â 6¿ù HCL Å×Å©³î·¯Áö½º´Â ¾Æ¸¶Á¸À¥¼­ºñ½º(AWS)¿Í Á¦ÈÞÇÏ¿© È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÌ¸ç ¾ÈÀüÇÏ°í °í¼º´ÉÀÇ ±â¾÷ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Redshift´Â ÃֽŠAI/ML ±â´ÉÀ» ÅëÇØ µ¥ÀÌÅͺ£À̽º ºñÁî´Ï½º ÀλçÀÌÆ®À» Á¦°øÇÏ¿© HCL Å×Å©³î·¯Áö½ºÀÇ ¾÷¹« È¿À²¼º, ÀÇ»ç°áÁ¤ ¹× ½ÃÀå Ãâ½Ã ½Ã°£À» °³¼±ÇÕ´Ï´Ù. ¶ÇÇÑ ±â¾÷ °æ¿µ¿¡¼­ ºñÁî´Ï½º ÀÎÅÚ¸®Àü½ºÀÇ ¿ªÇÒÀÌ È®´ëµÊ¿¡ µû¶ó Àú Áö¿¬, °í¼Ó ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½ÃÀå ¼ö¿ä¸¦ Å©°Ô °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ ¾îÇÁ·ÎÄ¡
    • Åé´Ù¿î ¾îÇÁ·ÎÄ¡
  • Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ¼­·Ð

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ³»¿ª : ¿ÀÆÛ¸µº°

  • ETL ¼Ö·ç¼Ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Åë°è ºÐ¼®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±âŸ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ³»¿ª : µ¥ÀÌÅÍ À¯Çüº°

  • ºñ±¸Á¶È­ µ¥ÀÌÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹Ý±¸Á¶È­ µ¥ÀÌÅÍ¿Í ±¸Á¶È­ µ¥ÀÌÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ³»¿ª : µµÀÔ ¸ðµ¨º°

  • ¿ÂÇÁ·¹¹Ì½º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Ŭ¶ó¿ìµå ±â¹Ý
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇÏÀ̺긮µå
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ³»¿ª : ±â¾÷ ±Ô¸ðº°

  • ´ë±â¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Áß¼Ò±â¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦10Àå ½ÃÀå ³»¿ª : ÃÖÁ¾»ç¿ëÀÚº°

  • BFSI
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • IT ¹× Åë½Å
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Á¤ºÎ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Á¦Á¶
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¼Ò¸Å
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇコÄɾî
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹Ìµð¾î¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±âŸ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦11Àå ½ÃÀå ³»¿ª : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ³»¿ª : ±¹°¡º°
    • ½ÃÀå ¿¹Ãø

Á¦12Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦13Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦14Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀïÀÇ Á¤µµ
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦15Àå °¡°Ý ºÐ¼®

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ÀÇ °³¿ä
    • Actian Corporation(HCL Technologies Limited)
    • Amazon Web Services Inc.(Amazon.com Inc)
    • Cloudera Inc.
    • Dell Technologies Inc.
    • Google LLC(Alphabet Inc.)
    • Hewlett Packard Enterprise Development LP
    • International Business Machines Corporation
    • Microsoft Corporation
    • Oracle Corporation
    • SAP SE
    • Snowflake Inc
    • Teradata Corporation
KSA 24.10.04

The global data warehousing market size reached US$ 31.7 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 70.4 Billion by 2032, exhibiting a growth rate (CAGR) of 9% during 2024-2032. The rising demand for next generation BI solutions, along with the increasing amount of data generated by organizations across the globe, is one of the key factors driving the market growth.

Global Data Warehousing Market Analysis:

  • Major Market Drivers: The increasing shift from manual to automated systems to carry out business operations, along with the increasing volume of data generated, is primarily driving the market for data warehousing solutions. In addition to this, the increasing requirement for dedicated storage systems to perform enhanced data analytics with low latency and real-time view is also catalyzing the market growth.
  • Key Market Trends: The rising popularity of cloud-based data warehousing solutions is acting as a significant growth-inducing factor for the market. Cloud-based data warehousing solutions provide better opportunities for collaboration and integration with other cloud services and applications. Additionally, advancements in cloud technology, such as enhanced security measures and data encryption, are further making businesses more confident in migrating their sensitive data to the cloud.
  • Competitive Landscape: Some of the leading players in the global data warehousing market include Actian Corporation (HCL Technologies Limited), Amazon Web Services Inc. (Amazon.com Inc), Cloudera Inc., Dell Technologies Inc., Google LLC (Alphabet Inc.), Hewlett Packard Enterprise Development L.P., International Business Machines Corporation, Microsoft Corporation, Oracle Corporation, SAP SE, Snowflake Inc, and Teradata Corporation, among others.
  • Geographical Trends: North America is anticipated to have a significant market share owing to the availability of technologically advanced data warehouse infrastructure. The U.S. organizations are rapidly adopting analytics solutions across several verticals. They are considered the leading country in the market due to the significant demand for managing operational data and the increased emergence of cloud solution providers. Moreover, various enterprises in the region are extensively investing in the deployment of robust data warehousing solutions to manage and utilize data effectively.
  • Challenges and Opportunities: Maintaining a large volume of accurate and consistent data across diverse sources can be quite difficult, resulting in issues like cyber threats and data breaches. However, various organizations are increasingly establishing robust data governance frameworks to improve data security quality, ensure compliance, and enhance decision-making processes, which is expected to offer significant growth opportunities to the market players.

Global Data Warehousing Market Trends:

Rising Penetration of Smartphones

The increasing number of people with smartphones and internet connections is primarily driving the growth of the global data warehousing market. According to the GSMA, there are more than 6.2 billion active iOS and android smartphones worldwide as of 2023, and it is expected to reach 7.4 billion by 2025. Additionally, the usage of mobile technology is increasing across a range of computer systems, including Data Warehouse (DW), Business Intelligence (BI) systems, and Data Analytic systems. Moreover, according to the Ministry of Information and Broadcasting, in November 2022, India had more than 1.2 billion mobile phone subscribers, including 600 million smartphone users. Furthermore, it was mentioned that in addition to having relatively cheap data rates, the widespread usage of smartphones has resulted in individuals consuming a lot of information and entertainment on their mobile devices. Besides this, mobile phones act as a database, where a considerable amount of user data is stored, which can be subjected to analysis as per the T&C approval by the user. The data can be utilized by active data warehouses to collect multiple traits of the user. Smartphone users need a vast cloud database for data access, thereby needing data warehousing solutions, driving market growth.

Emergence of Cloud Data Warehouses

The rising importance of business intelligence and analytics across different business verticals is acting as another significant growth-inducing factor for the market. Moreover, cloud data warehouses act as a backbone in analytics and business intelligence processes for storing large amounts of data. In line with this, the escalating adoption of cloud services is further augmenting the adoption of business intelligence and analytic practices as they aid organizations in deriving actionable insights. The shift towards the implementation of Artificial Intelligence (AI) and Machine Learning (ML) across different industries is further expected to bolster the market for data warehousing solutions. Moreover, various key market players are AI-integrated cloud data warehousing solutions. For instance, in October 2023, mParticle, Inc. announced the launch of ComposeID, an identity resolution service compatible with cloud data warehousing environments. ComposeID is based on IDSync. IDSync is intended to assist teams in supporting any identity strategy on any data architecture. Similarly, in July 2023, International Business Machines Corp. (IBM) announced new updates in the IBM Db2 Warehouse. The next generation of the warehouse can add cloud object storage with the support of advanced caching, delivering four times faster query response while cutting storage costs by 34%.

Increasing Adoption of Hybrid Work Models

The surge in remote work situations after the outbreak of COVID-19 has been advantageous for the demand of the data warehousing market. The emerging trend of work-from-home has generated new complicated challenges for organizations to overcome. As a result, businesses are increasingly embracing cloud computing and migrating to cloud data warehouses. In line with this, various tech giants are partnering with each other to develop high-performing cloud data warehouses. For instance, in June 2022, HCL Technologies partnered with Amazon Web Services. AWS allows HCL to offer scalable, cost-effective, secure, and high-performing enterprise data warehouse solutions. Amazon Redshift provides data-driven business insights enabled by modern AI/ML capabilities to improve operational efficiency, decision-making, and faster time to market to HCL Technologies. Besides this, the rising demand for low latency and high-speed analytics, combined with the growing role of business intelligence in enterprise management, is expected to drive the market demand significantly.

Global Data Warehousing Industry Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the global data warehousing market report, along with forecasts at the global, regional and country level from 2024-2032. Our report has categorized the market based on offering, data type, deployment model, enterprise size and end user.

Breakup by Offering:

  • ETL Solutions
  • Statistical Analysis
  • Data Mining
  • Others

ETL solutions hold the majority of the total market share

Based on the offering, the global data warehousing market can be segmented into ETL solutions, statistical analysis, data mining, and others. According to the report, ETL solutions hold the majority of the total market share.

Extract, transform, and load (ETL) refers to a process through which data is extracted from a source and then moved to a central host. The process is high in demand as it runs in parallel to save time. For instance, during data extraction, transformation can begin processing the received data simultaneously to prepare it for loading. This allows the loading process to work on the prepared data without waiting for the entire extraction process to finish.

Breakup by Data Type:

  • Unstructured Data
  • Semi-Structured and Structured Data

Semi-structured and structured data currently accounts for the largest market share

Based on the data type, the global data warehousing market has been divided into unstructured data and semi-structured and structured data. According to the report, semi-structured and structured data currently accounts for the largest market share.

Structured data is information that has been formatted and transformed into a well-defined data model. The raw data is mapped into predesigned fields that can then be extracted and read through SQL easily. Due to the organization of structured data, it is easier to analyze and drive insights from it. While on the other hand semi-structured data or partially structured data is another category between structured and unstructured data. Semi-structured data is a type of data that has some consistent and definite characteristics. Businesses generally use organizational properties like metadata or semantics tags with semi-structured data to make it more manageable.

Breakup by Deployment Model:

  • On-premises
  • Cloud-based
  • Hybrid

On-premises exhibit a clear dominance in the market

Based on the deployment model, the global data warehousing market can be categorized into on-premises, cloud-based, and hybrid. According to the report, on-premises exhibit a clear dominance in the market.

In an on-premises deployment model, the service is purchased and installed on the user server. This service is maintained by the IT specialists in the end-user organization. The growing demand for the on-premises model can be attributed to factors such as the high cost involved with the implementation and up-gradation and fewer options for scalability. These solutions offer features such as workflow streamlining, control, speed, security, governance, and reporting.

Breakup by Enterprise Size:

  • Large Enterprises
  • Small and Medium-sized Enterprises

Large enterprises currently hold the majority of the global market share

Based on the enterprise size, the global data warehousing market has been segregated into large enterprises and small and medium-sized enterprises, where large enterprises currently hold the majority of the global market share.

Large enterprises generally have more complex data management requirements on account of their scale and diverse operations, which may require a combination of on-premises solutions, cloud-based services, and hybrid deployments to meet their complex business needs. Large enterprises also need more customization, integration with existing systems, and advanced features such as data governance, analytics, and security.

Breakup by End User:

  • BFSI
  • IT and Telecom
  • Government
  • Manufacturing
  • Retail
  • Healthcare
  • Media and Entertainment
  • Others

The BFSI sector exhibits a clear dominance in the market

Based on the end user, the global data warehousing market can be bifurcated into BFSI, IT and telecom, government, manufacturing, retail, healthcare, media and entertainment, and others. According to the report, the BFSI sector exhibits a clear dominance in the market.

The banking, financial services, and insurance (BFSI) sector is highly lucrative for growth in the Data Warehouse-as-a-Service market as it deals with massive customer data generated regularly. Due to the large amount of data generated across the BFSI sector, enterprises need data warehousing solutions to automatically track the performance and behavior of the information stored in their systems. Numerous banks, including BNY Mellon, Morgan Stanley, Bank of America, Credit Suisse, and PNC are already working on strategies around Big Data in Banking, and other banks are rapidly catching up.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

North America currently dominates the global market

On a regional level, the market has been classified into North America, Asia-Pacific, Europe, Latin America, and Middle East and Africa, where North America currently dominates the global market.

North America is anticipated to have a significant market share owing to the availability of technologically advanced data warehouse infrastructure. U.S. organizations are rapidly adopting analytics solutions across several verticals. They are considered the leading country in the market due to the significant demand for managing operational data and the increased emergence of cloud solution providers. Moreover, various enterprises in the region are extensively investing in the deployment of robust data warehousing solutions to manage and utilize data effectively. For instance, in January 2023, Eucloid, a Data & Growth Intelligence company, announced a partnership with Databricks to make the Lakehouse Platform available to its Fortune 500 clients. The company's Lakehouse platform provides a single solution for all significant data tasks, which integrates several data warehouse and data lake features.

Competitive Landscape:

The market research report has provided a comprehensive analysis of the competitive landscape and outlook. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • Actian Corporation (HCL Technologies Limited)
  • Amazon Web Services Inc. (Amazon.com Inc)
  • Cloudera Inc.
  • Dell Technologies Inc.
  • Google LLC (Alphabet Inc.)
  • Hewlett Packard Enterprise Development LP
  • International Business Machines Corporation
  • Microsoft Corporation
  • Oracle Corporation
  • SAP SE
  • Snowflake Inc
  • Teradata Corporation

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

Global Data Warehousing Market News:

  • April 2024: Data Army, a leading Australian data consultancy specializing in advanced data solutions, partnered with Hightouch, the leading Composable Customer Data Platform, to provide Australian businesses with solutions to activate audiences and other customer data points directly from their organization's data warehouse.
  • January 2024: Datometry, the pioneer in database virtualization, and Yellowbrick Data announced that they have entered a technology partnership. By supporting Yellowbrick as a destination platform, enterprises can adopt Yellowbrick considerably faster. Existing Yellowbrick customers can increase usage by consolidating workloads from Oracle or Teradata systems to Yellowbrick.

Key Questions Answered in This Report

  • 1. What was the size of the global data warehousing market in 2023?
  • 2. What is the expected growth rate of the global data warehousing market during 2024-2032?
  • 3. What has been the impact of COVID-19 on the global data warehousing market?
  • 4. What are the key factors driving the global data warehousing market?
  • 5. What is the breakup of the global data warehousing market based on the offering?
  • 6. What is the breakup of the global data warehousing market based on the data type?
  • 7. What is the breakup of the global data warehousing market based on deployment model?
  • 8. What is the breakup of the global data warehousing market based on the enterprise size?
  • 9. What is the breakup of the global data warehousing market based on the end user?
  • 10. What are the key regions in the global data warehousing market?
  • 11. Who are the key players/companies in the global data warehousing market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Data Warehousing Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Offering

  • 6.1 ETL Solutions
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Statistical Analysis
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Data Mining
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Others
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast

7 Market Breakup by Data Type

  • 7.1 Unstructured Data
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Semi-Structured and Structured Data
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Deployment Model

  • 8.1 On-premises
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Cloud-based
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Hybrid
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast

9 Market Breakup by Enterprise Size

  • 9.1 Large Enterprises
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Small and Medium-sized Enterprises
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast

10 Market Breakup by End User

  • 10.1 BFSI
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 IT and Telecom
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Government
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast
  • 10.4 Manufacturing
    • 10.4.1 Market Trends
    • 10.4.2 Market Forecast
  • 10.5 Retail
    • 10.5.1 Market Trends
    • 10.5.2 Market Forecast
  • 10.6 Healthcare
    • 10.6.1 Market Trends
    • 10.6.2 Market Forecast
  • 10.7 Media and Entertainment
    • 10.7.1 Market Trends
    • 10.7.2 Market Forecast
  • 10.8 Others
    • 10.8.1 Market Trends
    • 10.8.2 Market Forecast

11 Market Breakup by Region

  • 11.1 North America
    • 11.1.1 United States
      • 11.1.1.1 Market Trends
      • 11.1.1.2 Market Forecast
    • 11.1.2 Canada
      • 11.1.2.1 Market Trends
      • 11.1.2.2 Market Forecast
  • 11.2 Asia-Pacific
    • 11.2.1 China
      • 11.2.1.1 Market Trends
      • 11.2.1.2 Market Forecast
    • 11.2.2 Japan
      • 11.2.2.1 Market Trends
      • 11.2.2.2 Market Forecast
    • 11.2.3 India
      • 11.2.3.1 Market Trends
      • 11.2.3.2 Market Forecast
    • 11.2.4 South Korea
      • 11.2.4.1 Market Trends
      • 11.2.4.2 Market Forecast
    • 11.2.5 Australia
      • 11.2.5.1 Market Trends
      • 11.2.5.2 Market Forecast
    • 11.2.6 Indonesia
      • 11.2.6.1 Market Trends
      • 11.2.6.2 Market Forecast
    • 11.2.7 Others
      • 11.2.7.1 Market Trends
      • 11.2.7.2 Market Forecast
  • 11.3 Europe
    • 11.3.1 Germany
      • 11.3.1.1 Market Trends
      • 11.3.1.2 Market Forecast
    • 11.3.2 France
      • 11.3.2.1 Market Trends
      • 11.3.2.2 Market Forecast
    • 11.3.3 United Kingdom
      • 11.3.3.1 Market Trends
      • 11.3.3.2 Market Forecast
    • 11.3.4 Italy
      • 11.3.4.1 Market Trends
      • 11.3.4.2 Market Forecast
    • 11.3.5 Spain
      • 11.3.5.1 Market Trends
      • 11.3.5.2 Market Forecast
    • 11.3.6 Russia
      • 11.3.6.1 Market Trends
      • 11.3.6.2 Market Forecast
    • 11.3.7 Others
      • 11.3.7.1 Market Trends
      • 11.3.7.2 Market Forecast
  • 11.4 Latin America
    • 11.4.1 Brazil
      • 11.4.1.1 Market Trends
      • 11.4.1.2 Market Forecast
    • 11.4.2 Mexico
      • 11.4.2.1 Market Trends
      • 11.4.2.2 Market Forecast
    • 11.4.3 Others
      • 11.4.3.1 Market Trends
      • 11.4.3.2 Market Forecast
  • 11.5 Middle East and Africa
    • 11.5.1 Market Trends
    • 11.5.2 Market Breakup by Country
    • 11.5.3 Market Forecast

12 SWOT Analysis

  • 12.1 Overview
  • 12.2 Strengths
  • 12.3 Weaknesses
  • 12.4 Opportunities
  • 12.5 Threats

13 Value Chain Analysis

14 Porters Five Forces Analysis

  • 14.1 Overview
  • 14.2 Bargaining Power of Buyers
  • 14.3 Bargaining Power of Suppliers
  • 14.4 Degree of Competition
  • 14.5 Threat of New Entrants
  • 14.6 Threat of Substitutes

15 Price Analysis

16 Competitive Landscape

  • 16.1 Market Structure
  • 16.2 Key Players
  • 16.3 Profiles of Key Players
    • 16.3.1 Actian Corporation (HCL Technologies Limited)
      • 16.3.1.1 Company Overview
      • 16.3.1.2 Product Portfolio
    • 16.3.2 Amazon Web Services Inc. (Amazon.com Inc)
      • 16.3.2.1 Company Overview
      • 16.3.2.2 Product Portfolio
      • 16.3.2.3 SWOT Analysis
    • 16.3.3 Cloudera Inc.
      • 16.3.3.1 Company Overview
      • 16.3.3.2 Product Portfolio
      • 16.3.3.3 Financials
    • 16.3.4 Dell Technologies Inc.
      • 16.3.4.1 Company Overview
      • 16.3.4.2 Product Portfolio
      • 16.3.4.3 Financials
      • 16.3.4.4 SWOT Analysis
    • 16.3.5 Google LLC (Alphabet Inc.)
      • 16.3.5.1 Company Overview
      • 16.3.5.2 Product Portfolio
      • 16.3.5.3 SWOT Analysis
    • 16.3.6 Hewlett Packard Enterprise Development LP
      • 16.3.6.1 Company Overview
      • 16.3.6.2 Product Portfolio
      • 16.3.6.3 Financials
      • 16.3.6.4 SWOT Analysis
    • 16.3.7 International Business Machines Corporation
      • 16.3.7.1 Company Overview
      • 16.3.7.2 Product Portfolio
      • 16.3.7.3 Financials
      • 16.3.7.4 SWOT Analysis
    • 16.3.8 Microsoft Corporation
      • 16.3.8.1 Company Overview
      • 16.3.8.2 Product Portfolio
      • 16.3.8.3 Financials
      • 16.3.8.4 SWOT Analysis
    • 16.3.9 Oracle Corporation
      • 16.3.9.1 Company Overview
      • 16.3.9.2 Product Portfolio
      • 16.3.9.3 Financials
      • 16.3.9.4 SWOT Analysis
    • 16.3.10 SAP SE
      • 16.3.10.1 Company Overview
      • 16.3.10.2 Product Portfolio
      • 16.3.10.3 Financials
      • 16.3.10.4 SWOT Analysis
    • 16.3.11 Snowflake Inc
      • 16.3.11.1 Company Overview
      • 16.3.11.2 Product Portfolio
      • 16.3.11.3 Financials
    • 16.3.12 Teradata Corporation
      • 16.3.12.1 Company Overview
      • 16.3.12.2 Product Portfolio
      • 16.3.12.3 Financials
      • 16.3.12.4 SWOT Analysis
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦