½ÃÀ庸°í¼­
»óǰÄÚµå
1561517

¼¼°èÀÇ Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå º¸°í¼­ : ±¸¼º¿ä¼Ò, ¹èÆ÷ ¸ðµ¨, ¿ëµµ, Áö¿ªº°(2024-2032³â)

Fog Computing Market Report by Component, Deployment Models, Application, and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 147 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå ¼¼°è ½ÃÀå ±Ô¸ð´Â 2023³â 1¾ï 9,680¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC ±×·ìÀº 2032³â±îÁö 5¾ï 2,880¸¸ ´Þ·¯¿¡ ´ÞÇϰí, 2024³âºÎÅÍ 2032³â±îÁö 11.3%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT) ±â¼ú äÅà Ȯ´ë, ÀúÁö¿¬ ¹× ½Ç½Ã°£ ó¸® ¼ö¿ä Áõ°¡, µ¥ÀÌÅÍ º¸¾È °­È­, È®À强 ¹× ´ë¿ªÆø °ü¸® °³¼±, 5GÀÇ ºÎ»ó, ºÐ»ê ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ´Ù¾çÇÑ ¿äÀÎÀÌ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå ºÐ¼® :

  • ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ : ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÇÔ²² »ç¹°ÀÎÅͳÝ(IoT) ±â±âÀÇ º¸±Þ°ú 5G ³×Æ®¿öÅ©ÀÇ È®»ê¿¡ µû¸¥ °ÍÀÔ´Ï´Ù. ÀÌ·Î ÀÎÇØ Áö¿¬ ½Ã°£À» ÁÙÀÌ°í º¸¾ÈÀ» °­È­ÇÏ¿© ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ºÐ»êÇü ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
  • ÁÖ¿ä ½ÃÀå µ¿Çâ : Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå ÀλçÀÌÆ®¿¡ µû¸£¸é, ¿§Áö¿¡¼­ÀÇ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML) ÅëÇÕ, Æ÷±× ÄÄÇ»ÆÃ Ç÷§Æû ¹× ¸ÂÃãÇü ¿ëµµ ¼ÒÇÁÆ®¿þ¾î °³¹ß, ÇÏÀ̺긮µå ¹èÆ÷ ¸ðµ¨ µîÀÌ Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀ» ÁÖµµÇÏ´Â ¼ºÀå ¿äÀÎÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. µîÀÌ ¾÷°è¸¦ ¼±µµÇÏ´Â ¼ºÀå ¿äÀÎÀ¸·Î ²ÅÈ÷°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ Æ÷±× ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀÇ ÀûÀÀ¼º, È®À强 ¹× È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.
  • Áö¸®Àû µ¿Çâ : ºÏ¹Ì´Â °íµµ·Î ¹ß´ÞÇÑ ±â¼ú ÀÎÇÁ¶ó, IoT ¹× ½º¸¶Æ®½ÃƼ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ, ÁÖ¿ä ¾÷°è Âü¿©ÀÚÀÇ Á¸Àç·Î ÀÎÇØ Æ÷±× ÄÄÇ»ÆÃ ºÐ¾ß¿¡¼­ °è¼Ó ¿ìÀ§¸¦ Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº ±â¼ú Çõ½Å°ú ÷´Ü ±â¼úÀÇ Á¶±â µµÀÔ¿¡ ÁßÁ¡À» µÎ°í ÀÖ¾î Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¿ªµ¿¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
  • °æÀï ±¸µµ : Æ÷±× ÄÄÇ»ÆÃ ¾÷°èÀÇ ÁÖ¿ä ½ÃÀå ±â¾÷À¸·Î´Â ADLINK Technology Inc. Technologies Inc., FogHorn Systems, Fujitsu Corporation, General Electric, Hitachi Vantara Corporation(Hitachi, Ltd.), Huawei Technologies Co, International Business Machines Corporation, Oracle Corporation, Toshiba Corporation µîÀÌ ÀÖ½À´Ï´Ù.
  • °úÁ¦ ¹× ±âȸ: ÀÌ ½ÃÀåÀº µ¥ÀÌÅÍ º¸¾È ¹× ºÐ»êÇü ³×Æ®¿öÅ© °ü¸®¿Í °ü·ÃµÈ º¹À⼺¿¡ ´ëºñÇÏ´Â ÇÑÆí, ¿î¿µ È¿À²¼º°ú ¿ëµµ¸¦ ½ÇÇöÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, IoT ¹× 5G ±â¼ú µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °ß°íÇϰí À¯¿¬ÇÑ Æ÷±× ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϸ鼭 ½ÃÀå È®´ë°¡ ¿¹»óµË´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå µ¿Çâ :

IoT µð¹ÙÀ̽ºÀÇ ±ÞÁõ

Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå Á¶»ç º¸°í¼­¿¡ µû¸£¸é, ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå µ¿ÀÎ Áß Çϳª´Â IoT ±â±âÀÇ º¸±Þ È®´ëÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µð¹ÙÀ̽º´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇϸç, Àû½Ã¿¡ ÅëÂû·Â°ú Á¶Ä¡¸¦ ÃëÇϱâ À§ÇØ ½Ç½Ã°£ ó¸® ¹× ºÐ¼®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±âÁ¸ Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¸ðµ¨Àº ÀÌ·¯ÇÑ ¹æ´ëÇÑ µ¥ÀÌÅÍ ºÎÇϸ¦ ó¸®ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ Áö¿¬ ¹®Á¦ ¹× ´ë¿ªÆø Á¦ÇÑÀÌ ¹ß»ýÇÕ´Ï´Ù. ¶ÇÇÑ, Æ÷±× ÄÄÇ»ÆÃÀº µ¥ÀÌÅͰ¡ »ý¼ºµÇ´Â °÷°ú °¡±î¿î ³×Æ®¿öÅ© ¿§Áö¿¡¼­ Ŭ¶ó¿ìµå ±â´ÉÀ» »ç¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÕ´Ï´Ù. À̸¦ ÅëÇØ ´ë±â ½Ã°£À» Àç¼³Á¤Çϰí Ŭ¶ó¿ìµå·Î Àü¼ÛÇØ¾ß ÇÏ´Â µ¥ÀÌÅ͸¦ ÁÙ¿© IoT ¿ëµµÀÇ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ±× °á°ú, Æ÷±× ÄÄÇ»ÆÃ ¼Ö·ç¼ÇÀº IoT µð¹ÙÀ̽º¸¦ ÁýÁßÀûÀ¸·Î »ç¿ëÇÏ´Â ºÐ¾ß¿¡¼­ äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

5G ³×Æ®¿öÅ©ÀÇ ¼ºÀå

5G ³×Æ®¿öÅ©ÀÇ º¸±Þ È®´ë´Â ¶Ç ´Ù¸¥ ¼ºÀå µ¿·ÂÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, 5G ±â¼úÀº Æ÷±× ÄÄÇ»ÆÃÀÇ ¼º°ø¿¡ ÇʼöÀûÀÎ ÃÊÀúÁö¿¬, ±¤´ë¿ªÆø, Çâ»óµÈ ¿¬°á¼ºÀ» ¾à¼ÓÇÕ´Ï´Ù. 5GÀÇ °íÀ¯ÇÑ Æ¯¼ºÀÎ ºü¸¥ ¼Óµµ¿Í ³·Àº Áö¿¬½Ã°£Àº Æ÷±×³ëµå¿¡¼­ µ¥ÀÌÅÍ Ã³¸®¿Í ºÐ¼®À» ´õ¿í ¿ëÀÌÇÏ°Ô ÇÏ¿© º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ƯÈ÷ ÀÚÀ²ÁÖÇàÂ÷, Áõ°­Çö½Ç(AR), °¡»óÇö½Ç(VR), »ê¾÷ ÀÚµ¿È­ µî ½Ç½Ã°£ ÀÀ´äÀÌ ÇÊ¿äÇÑ ¿ëµµ¿¡ Àû¿ëµÉ ¼ö ÀÖÀ¸¸ç, 5G¿Í Æ÷±× ÄÄÇ»ÆÃÀÇ °áÇÕÀº ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÏ°í ºÐ¼®ÇØ¾ß ÇÒ Çʿ伺ÀÌ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Æ÷±× ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Çö´ë »çȸ´Â ¸Å¿ì ºü¸¥ ¼Óµµ·Î º¯È­Çϰí ÀÖÀ¸¸ç, ±â¾÷ ¹× Á¶Á÷Àº ¾÷¹«¸¦ ÅëÇØ »ý¼ºµÈ µ¥ÀÌÅͷκÎÅÍ Áï°¢ÀûÀÎ ÅëÂû·Â°ú ÇൿÀÌ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº µ¥ÀÌÅÍ ¼Ò½º¿¡ °¡±î¿î °÷¿¡ ÄÄÇ»ÆÃ ¹× ½ºÅ丮Áö ¸®¼Ò½º¸¦ Á¦°øÇÏ¿© ½Ç½Ã°£ 󸮸¦ ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ´Â ½º¸¶Æ® ±×¸®µå, ÇコÄÉ¾î ¸ð´ÏÅ͸µ, ºñµð¿À °¨½Ã, ±ÝÀ¶ ¼­ºñ½º µî ½Ã°£ÀÌ Áß¿äÇÑ ¿ëµµ¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ ¿ëµµÀÇ ÀÀ´ä¼º°ú È¿À²¼ºÀ» ³ôÀ̰í, µ¥ÀÌÅÍ º¸¾ÈÀ» ÃËÁøÇϰí, ±â¹Ð¼ºÀÌ ³·Àº Á¤º¸¸¦ ±¤¹üÀ§ÇÑ ÀÎÅͳݿ¡ °ø°³ÇÔÀ¸·Î½á ÇÁ¶óÀ̹ö½Ã¸¦ °­È­ÇÏ¿© Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå Àü¸Á¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

Æ÷±×ÄÄÇ»ÆÃ ½ÃÀå ¼¼ºÐÈ­:

IMARC GroupÀº °¢ ½ÃÀå ºÎ¹®ÀÇ ÁÖ¿ä µ¿Ç⠺м®°ú 2024³âºÎÅÍ 2032³â±îÁö ¼¼°è, Áö¿ª ¹× ±¹°¡º° ¿¹ÃøÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ º¸°í¼­´Â ±¸¼º ¿ä¼Ò, ¹èÆ÷ ¸ðµ¨ ¹× ¿ëµµ¸¦ ±âÁØÀ¸·Î ½ÃÀåÀ» ºÐ·ùÇÕ´Ï´Ù.

±¸¼º ¿ä¼Òº° ºÐ¼®

  • Çϵå¿þ¾î Çϵå¿þ¾î
    • °ÔÀÌÆ®¿þÀÌ
    • ¶ó¿ìÅÍ ¹× ½ºÀ§Ä¡
    • IP ºñµð¿À Ä«¸Þ¶ó
    • ¼¾¼­
    • ¸¶ÀÌÅ©·Î µ¥ÀÌÅͼ¾ÅÍ
  • ¼ÒÇÁÆ®¿þ¾î ¼ÒÇÁÆ®¿þ¾î
    • Æ÷±× ÄÄÇ»ÆÃ Ç÷§Æû
    • ¸ÂÃãÇü ÀÀ¿ë ¼ÒÇÁÆ®¿þ¾î

¼ÒÇÁÆ®¿þ¾î°¡ ½ÃÀå Á¡À¯À²ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇÕ´Ï´Ù.

ÀÌ º¸°í¼­´Â ±¸¼º ¿ä¼Òº°·Î ½ÃÀåÀ» ¼¼ºÎÀûÀ¸·Î ºÐ·ùÇÏ°í ºÐ¼®ÇÕ´Ï´Ù. ¿©±â¿¡´Â Çϵå¿þ¾î(°ÔÀÌÆ®¿þÀÌ, ¶ó¿ìÅÍ ¹× ½ºÀ§Ä¡, IP ºñµð¿À Ä«¸Þ¶ó, ¼¾¼­, ¸¶ÀÌÅ©·Î µ¥ÀÌÅͼ¾ÅÍ)¿Í ¼ÒÇÁÆ®¿þ¾î(Æ÷±× ÄÄÇ»ÆÃ Ç÷§Æû ¹× ¸ÂÃãÇü ¿ëµµ ¼ÒÇÁÆ®¿þ¾î)°¡ Æ÷ÇԵ˴ϴÙ. º¸°í¼­¿¡ µû¸£¸é ¼ÒÇÁÆ®¿þ¾î°¡ °¡Àå Å« ºÎ¹®À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ Ç÷§Æû ¹× ¸ÂÃãÇü ¿ëµµ ¼ÒÇÁÆ®¿þ¾î¿Í °°Àº ¼ÒÇÁÆ®¿þ¾î ±¸¼º ¿ä¼Ò¿¡ ´ëÇÑ ¼ö¿ä´Â ´Ù¾çÇÑ »ê¾÷ÀÇ ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â º¸´Ù À¯¿¬Çϰí È®Àå °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃ Ç÷§ÆûÀº ¿©·¯ ¿¡Áö ÀåÄ¡¿¡ ºÐ»êµÈ ÄÄÇ»ÆÃ ÀÚ¿ø°ú µ¥ÀÌÅÍ °ü¸®¸¦ ¼ÒÀ¯ÇÏ´Â Á¾ÇÕÀûÀÎ ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦°øÇÏ¿© Àüü ½Ã½ºÅÛÀÇ À¯¿¬¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÇÑÆí, ¸ÂÃãÇü ¿ëµµ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ÃÖ°íÀÇ ¼º´É°ú ±âÁ¸ ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕ Ãø¸é¿¡¼­ ±â¾÷ÀÌ Æ÷±× ÄÄÇ»ÆÃÀ» ÀÚ½ÅÀÇ ¿î¿µ ¿ä±¸¿¡ ¸Â°Ô ¸ÂÃãÈ­ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. À̿ʹ º°µµ·Î, ÀÌ·¯ÇÑ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀº ¿§Áö µð¹ÙÀ̽ºÀÇ ¸ð´ÏÅ͸µ, °ü¸® ¹× ¿ÀÄɽºÆ®·¹À̼ÇÀ» À§ÇÑ °­·ÂÇÑ µµ±¸¸¦ ÇÔ²² Á¦°øÇÏ¿© ¿øÈ°Çϰí È¿À²ÀûÀÎ ¿î¿µÀ» ÅëÇØ Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼öÀͼºÀ» °­È­ÇÕ´Ï´Ù.

Àü°³ ¸ðµ¨ º° ³»¿ª

  • ÇÁ¶óÀ̺ø Æ÷±× ³ëµå
  • Ä¿¹Â´ÏƼ Æ÷±× ³ëµå
  • ÆÛºí¸¯ Æ÷±× ³ëµå
  • ÇÏÀ̺긮µå Æ÷±× ³ëµå

ÀÌ º¸°í¼­´Â ¹èÆ÷ ¸ðµ¨¿¡ µû¶ó ½ÃÀåÀ» ¼¼ºÎÀûÀ¸·Î ºÐ·ùÇÏ°í ºÐ¼®ÇÕ´Ï´Ù. ¿©±â¿¡´Â ÇÁ¶óÀ̺ø Æ÷±×³ëµå, Ä¿¹Â´ÏƼ Æ÷±×³ëµå, ÆÛºí¸¯ Æ÷±×³ëµå, ÇÏÀ̺긮µå Æ÷±×³ëµå°¡ Æ÷ÇԵ˴ϴÙ.

ÇÁ¶óÀ̺ø Æ÷±×³ëµå¿¡ ´ëÇÑ ¼ö¿ä´Â ƯÈ÷ ±â¹Ð µ¥ÀÌÅÍ Ã³¸®¿Í ÄÄÇöóÀ̾𽺰¡ Áß¿äÇÑ ±ÝÀ¶, ÇコÄÉ¾î µîÀÇ ºÐ¾ß¿¡¼­ µ¥ÀÌÅÍ º¸¾È°ú °ü¸®¸¦ °­È­ÇϰíÀÚ ÇÏ´Â Á¶Á÷¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

Ä¿¹Â´ÏƼ Æ÷±× ³ëµå´Â ¿¬±¸±â°ü, ½º¸¶Æ®½ÃƼ µî °øÅëÀÇ °ü½É»ç¸¦ °¡Áø ƯÁ¤ ±×·ìÀ» ´ë»óÀ¸·Î Çϸç, ÀÚ¿ø °øÀ¯¿Í µ¥ÀÌÅÍ Ã³¸®ÀÇ °øµ¿È­¸¦ ÃËÁøÇÏ¿© È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÆÛºí¸¯ Æ÷±×³ëµå´Â ±¤¹üÀ§ÇÏ°í »ó´ëÀûÀ¸·Î ¹Î°¨µµ°¡ ³·Àº ¿ëµµ¸¦ À§ÇØ ¼³°èµÇ¾ú½À´Ï´Ù. ÆÛºí¸¯ Æ÷±×³ëµå´Â ±Ô¸ðÀÇ °æÁ¦¸¦ ½ÇÇöÇÏ°í ¼Ò¸Å¾÷, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µîÀÇ ºÐ¾ß¿¡¼­ ´Ù¾çÇÑ µ¥ÀÌÅÍ ºÎÇϸ¦ ó¸®Çϱâ À§ÇÑ ºñ¿ë È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

ÇÁ¶óÀ̺ø°ú ÆÛºí¸¯ ÄÄÆ÷³ÍÆ®¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå Æ÷±×³ëµå´Â À¯¿¬¼º°ú ÃÖÀûÈ­µÈ ¸®¼Ò½º Ȱ¿ëÀ» Á¦°øÇϸç, º¸¾È, ºñ¿ë, ¼º´É¿¡ ´ëÇÑ °³º°ÀûÀÎ ¿ä±¸¿Í ƯÁ¤ ºñÁî´Ï½ºÀÇ µ¥ÀÌÅÍ ±â¹Ð¼ºÀ» ±â¹ÝÀ¸·Î ÇÑ ±ÕÇü ÀâÈù º¸¾È, ºñ¿ë, ¼º´ÉÀ¸·Î ¸ñÀûÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ñÀûÀ» ´Þ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿ëµµº° ºÐ¼®

  • ºôµù ¹× Ȩ ¿ÀÅä¸ÞÀ̼Ç
  • ½º¸¶Æ® ¿¡³ÊÁö
  • ½º¸¶Æ® Á¦Á¶
  • ¿î¼Û ¹× ¹°·ù
  • Ä¿³ØÆ¼µå Çコ
  • º¸¾È ¹× ºñ»ó»çÅÂ

½º¸¶Æ® Á¦Á¶ »ê¾÷ÀÌ ÁÖ¿ä ½ÃÀå ºÎ¹®À» Â÷ÁöÇÕ´Ï´Ù.

ÀÌ º¸°í¼­´Â ½ÃÀåÀ» ¿ëµµº°·Î ¼¼ºÎÀûÀ¸·Î ºÐ·ùÇÏ°í ºÐ¼®ÇÕ´Ï´Ù. ¿©±â¿¡´Â ºôµù ¹× Ȩ ¿ÀÅä¸ÞÀ̼Ç, ½º¸¶Æ® ¿¡³ÊÁö, ½º¸¶Æ® Á¦Á¶, ¿î¼Û ¹× ¹°·ù, Ä¿³ØÆ¼µå Çコ, º¸¾È ¹× ºñ»ó»çŰ¡ Æ÷ÇԵ˴ϴÙ. º¸°í¼­¿¡ µû¸£¸é, ½º¸¶Æ® Á¦Á¶°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.

½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ´õ ³ªÀº ÀÚµ¿È­¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ½º¸¶Æ® Á¦Á¶ »ê¾÷¿¡¼­ Æ÷±× ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ¼ö¿ä°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. Æ÷±× ÄÄÇ»ÆÃÀº ·ÎÄà µ¥ÀÌÅÍ Ã³¸®¸¦ °­È­ÇÏ¿© ´ë±â ½Ã°£À» ÃÖ¼ÒÈ­Çϰí ÀÇ»ç °áÁ¤ ½Ã°£À» È¿°úÀûÀ¸·Î ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ¿¹Ãø À¯Áöº¸¼ö¿¡ ¸Å¿ì Áß¿äÇϸç, ÀÓ¹ÚÇÑ Àåºñ °íÀåÀ» ½Ç½Ã°£À¸·Î ½Äº°ÇÏ°í ±â°è ¼ö¸íÀ» ¿¬ÀåÇÏ¿© ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ´Ù¿îŸÀÓÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ÷±× ÄÄÇ»ÆÃÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú ºü¸¥ ÀÀ´ä¿¡ ÇÊ¿äÇÑ ÄÄÇ»ÆÃ ¼º´ÉÀ» Á¦°øÇÏ¿© °íµµÀÇ ÀÚµ¿È­ ½Ã½ºÅÛÀ» Áö¿øÇÔÀ¸·Î½á »ý»ê ¶óÀΰú Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¹Ð µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÔÀ¸·Î½á Æ÷±× ÄÄÇ»ÆÃÀº µ¥ÀÌÅÍ º¸¾È°ú ÇÁ¶óÀ̹ö½Ã¸¦ Çâ»ó½ÃÄÑ Æ÷±× ÄÄÇ»ÆÃ »ê¾÷ÀÇ Àü¸Á¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

Áö¿ªº° ºÐ¼®

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿/¾ÆÇÁ¸®Ä«

ºÏ¹Ì°¡ Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ¸ç ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ºÏ¹Ì(¹Ì±¹, ij³ª´Ù), ¾Æ½Ã¾ÆÅÂÆò¾ç(Áß±¹, ÀϺ», Àεµ, Çѱ¹, È£ÁÖ, Àεµ³×½Ã¾Æ, ±âŸ), À¯·´(µ¶ÀÏ, ÇÁ¶û½º, ¿µ±¹, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ, ·¯½Ã¾Æ, ±âŸ), ¶óƾ¾Æ¸Þ¸®Ä«(ºê¶óÁú, ¸ß½ÃÄÚ, ±âŸ), Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÁÖ¿ä Áö¿ªÀ» Á¾ÇÕÀûÀ¸·Î ºÐ¼®ÇÕ´Ï´Ù. ½ÃÀåµµ Á¾ÇÕÀûÀ¸·Î ºÐ¼®ÇÕ´Ï´Ù. º¸°í¼­¿¡ µû¸£¸é ºÏ¹Ì´Â Æ÷±× ÄÄÇ»ÆÃÀÇ °¡Àå ±Ô¸ð°¡ Å« Áö¿ª ½ÃÀåÀÔ´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ »ê¾÷ º¸°í¼­¿¡ µû¸£¸é, ºÏ¹Ì ½ÃÀå ¼ö¿ä´Â ÀÌ Áö¿ªÀÇ Ã·´Ü ±â¼ú ÀÎÇÁ¶ó, IoT ¹× ½º¸¶Æ®½ÃƼ ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, ÁÖ¿ä »ê¾÷ ±â¾÷ÀÇ Á¸Àç¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì, ƯÈ÷ ¹Ì±¹Àº ±¤¹üÀ§ÇÑ Á¶»ç °³¹ß ³ë·Â°ú Çõ½ÅÀ» µÞ¹ÞħÇϴ źźÇÑ »ýŰè·Î ÀÎÇØ ÷´Ü ±â¼ú äÅÃÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÇコÄɾî, ÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ IoT ¿ëµµ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, Æ÷±× ÄÄÇ»ÆÃ°ú °°Àº È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì¿¡´Â ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷ ¹× ½ºÅ¸Æ®¾÷ÀÌ ÁøÃâÇØ ÀÖ¾î Æ÷±× ÄÄÇ»ÆÃ ±â¼úÀÇ °³¹ß ¹× µµÀÔÀÌ ÃËÁøµÇ¾î Áö¿ª Àüü¿¡ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù.

(Âü°í·Î, ÀÌ´Â ÁÖ¿ä ±â¾÷ÀÇ ÀϺΠ¸ñ·ÏÀ̸ç, Àüü ¸ñ·ÏÀº º¸°í¼­¿¡¼­ È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù)

  • ¼¼°è °æÀï ȯ°æÀº ±â¼ú ´ë±â¾÷, Çõ½ÅÀû ½ºÅ¸Æ®¾÷, Æ´»õ ±â¾÷ µî ¿©·¯ ÁÖ¿ä ±â¾÷ÀÇ Á¸Àç·Î Ư¡Áö¾îÁý´Ï´Ù. ÀÌµé ±â¾÷Àº È®À强, º¸¾È, IoT ¹× 5G ±â¼ú°úÀÇ ÅëÇÕ °³¼±¿¡ ÁßÁ¡À» µÎ°í Æ÷±× ÄÄÇ»ÆÃ Á¦°øÀ» °­È­Çϱâ À§ÇØ ¿¬±¸ °³¹ß(R&D)¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Çù¾÷, ÆÄÆ®³Ê½Ê, Àü·«Àû Àμö´Â ½ÃÀå ÀÔÁö¸¦ È®´ëÇϰí Çõ½ÅÀ» ÃËÁøÇϱâ À§ÇØ Ã¤ÅÃÇÏ´Â ÀϹÝÀûÀÎ Àü·«ÀÔ´Ï´Ù. ¶ÇÇÑ, ¿ÀǼҽº Ç÷§Æû°ú Ä¿¹Â´ÏƼ ÁÖµµÇü ÇÁ·ÎÁ§Æ®°¡ È®»êµÇ¸é¼­ ´Ù¾çÇÑ °³¹ßÀÚµéÀÌ »ýŰ迡 ±â¿©ÇÒ ¼ö ÀÖ´Â ¿©°ÇÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. °æÀï ȯ°æÀº AI¿Í MLÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ´õ¿í Ä¡¿­ÇØÁö°í ÀÖÀ¸¸ç, ÀÌ´Â Æ÷±× ÄÄÇ»ÆÃ ¼Ö·ç¼Ç¿¡ ÅëÇÕµÇ¾î º¸´Ù Áö´ÉÀûÀ̰í ÀÚÀ²ÀûÀÎ ½Ã½ºÅÛÀ» Á¦°øÇÕ´Ï´Ù.

Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå ´º½º :

  • 2023³â 1¿ù, ¾Æ¸¶Á¸À¥¼­ºñ½º(AWS)´Â IoT ±â±â¸¦ À§ÇÑ ¿§Áö ÄÄÇ»ÆÃ Ç÷§ÆûÀÇ ¾÷±×·¹ÀÌµå ¹öÀüÀÎ AWS IoT Greengrass 3.0À» Ãâ½ÃÇß½À´Ï´Ù. ÃֽйöÀü¿¡¼­´Â º¸¾È ±â´ÉÀÌ °³¼±µÇ°í ÇÁ·Î±×·¡¹Ö ¾ð¾î°¡ Ãß°¡·Î Áö¿øµË´Ï´Ù.

º» º¸°í¼­¿¡¼­ ´Ù·é ÁÖ¿ä Áú¹®

  • ¼¼°è Æ÷±× ÄÄÇ»ÆÃÀÇ ±Ô¸ð´Â?
  • 2024-2032³â Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå ¼¼°è ½ÃÀå ¼ºÀå·üÀº?
  • ¼¼°è Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀ» À̲ô´Â ÁÖ¿ä ¿äÀÎÀº?
  • Äڷγª19°¡ ¼¼°è Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâÀº?
  • ¼¼°è Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ±¸¼º ¿ä¼Òº° ½ÃÀå ÇöȲÀº?
  • ¼¼°è Æ÷±×ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¿ëµµº° ½ÃÀå ÇöȲÀº?
  • Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼¼°è ÁÖ¿ä Áö¿ªÀº?
  • Æ÷±× ÄÄÇ»ÆÃ ½ÃÀåÀÇ ¼¼°è ÁÖ¿ä ±â¾÷Àº?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ Á¢±Ù
    • Åé´Ù¿î Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼­·Ð

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ Æ÷±× ÄÄÇ»ÆÃ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ½ÃÀå µ¿Çâ
    • ÁÖ¿ä ºÎ¹®
      • °ÔÀÌÆ®¿þÀÌ
      • ¶ó¿ìÅÍ ¹× ½ºÀ§Ä¡
      • IP Ä·ÄÚ´õ
      • ¼¾¼­
      • ¸¶ÀÌÅ©·Î µ¥ÀÌÅͼ¾ÅÍ
    • ½ÃÀå ¿¹Ãø
  • ¼ÒÇÁÆ®¿þ¾î
    • ½ÃÀå µ¿Çâ
    • ÁÖ¿ä ºÎ¹®
      • Æ÷±× ÄÄÇ»ÆÃ Ç÷§Æû
      • ¸ÂÃãÇü ¾ÖÇø®ÄÉÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ºÐ¼® : Àü°³ ¸ðµ¨º°

  • ÇÁ¶óÀ̺ø Æ÷±× ³ëµå
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Ä¿¹Â´ÏƼ Æ÷±× ³ëµå
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÆÛºí¸¯ Æ÷±× ³ëµå
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇÏÀ̺긮µå Æ÷±× ³ëµå
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • ºôµù ¹× Ȩ ¿ÀÅä¸ÞÀ̼Ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ½º¸¶Æ® ¿¡³ÊÁö
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ½º¸¶Æ® Á¦Á¶
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿î¼Û ¹× ¹°·ù
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Ä¿³ØÆ¼µå Çコ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • º¸¾È ¹× ±ä±Þ»çÅÂ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ºÐ¼® : ±¹°¡º°
    • ½ÃÀå ¿¹Ãø

Á¦10Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå PorterÀÇ Five Forces ºÐ¼®

  • °³¿ä
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀï Á¤µµ
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦13Àå °¡°Ý ºÐ¼®

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • ADLINK Technology Inc.
    • Cisco Systems Inc.
    • Cradlepoint Inc.(Telefonaktiebolaget LM Ericsson)
    • Dell Technologies Inc.
    • FogHorn Systems
    • Fujitsu Limited
    • General Electric
    • Hitachi Vantara Corporation(Hitachi Ltd.)
    • Huawei Technologies Co. Limited
    • International Business Machines Corporation
    • Oracle Corporation
    • Toshiba Corporation
LSH 24.10.17

The global fog computing market size reached US$ 196.8 Million in 2023. Looking forward, IMARC Group expects the market to reach US$ 528.8 Million by 2032, exhibiting a growth rate (CAGR) of 11.3% during 2024-2032. Various factors like increasing adoption of the Internet of Things (IoT) technology, growing demand for low latency and real-time processing, enhanced data security, scalability, improved bandwidth management, the rise of fifth-generation (5G), and the requirement for decentralized computing are some of the main factors aiding in market expansion.

Fog Computing Market Analysis:

  • Major Market Drivers: The main driving forces behind the market growth are the proliferation of the Internet of Things (IoT) devices and the deployment of 5G networks, coupled with surging demand for real-time data processing and analytics. This boosts the demand for decentralized computing solutions that can process vast amounts of data with reduced latency and improved security.
  • Key Market Trends: Based on fog computing market insights, the integration of artificial intelligence (AI) and machine learning (ML) at the edge, developing fog computing platforms and customized application software, and hybrid deployment models are some of the industry-leading growth factors. These trends enhance adaptability, scalability, and efficiency for fog computing solutions across various industries.
  • Geographical Trends: North America is anticipated to continue dominating the fog computing segment, given the highly developed technological infrastructural setup in the region, large-scale investments invited in IoT and smart city projects, and the presence of key industry participants. In addition to this, the region's focus on innovation and early adoption of state-of-the-art technologies also fog computing market dynamics.
  • Competitive Landscape: Some of the major market players in the fog computing industry include ADLINK Technology Inc., Cisco Systems Inc., Cradlepoint Inc. (Telefonaktiebolaget LM Ericsson), Dell Technologies Inc., FogHorn Systems, Fujitsu Limited, General Electric, Hitachi Vantara Corporation (Hitachi Ltd.), Huawei Technologies Co. Limited, International Business Machines Corporation, Oracle Corporation, Toshiba Corporation, among many others.
  • Challenges and Opportunities: While the market is bracing itself for challenges related to the security of data and intricacies involved in managing distributed networks, it also presents opportunities for operational efficiencies and enabling applications. As industries increasingly adopt IoT and 5G technologies, the demand for robust and flexible fog computing solutions is expected to surge, fostering market expansion.

Fog Computing Market Trends:

Proliferation of IoT Devices

According to the fog computing market research report one of the major growth drivers in the market is the expanding penetration of IoT devices. These devices generate enormous volumes of data that need processing and analysis in real time to deliver timely insights and actions. Traditional cloud computing models often struggle to handle this massive data load, leading to latency issues and bandwidth limitations. Moreover, fog computing addresses these challenges by making cloud capabilities available at the edge of the network, closer to where data is generated, thereby resolving these challenges. This resets latency, reduces data that needs to be forwarded to the cloud, and gives IoT applications a performance boost. As a result, fog computing solutions are increasingly adopted by sectors that make intensive use of IoT devices.

Growth of 5G Networks

The increasing deployment of 5G networks is acting as another significant growth-inducing factor. 5G technology promises to deliver ultra-low latency, high bandwidth, and enhanced connectivity, which are critical for the success of fog computing. Its inherent characteristics, like high speed and lower latency, further facilitate the processing and analysis of data on fog nodes and hence faster and more reliable services. This is particularly applicable to applications that require real-time responses, such as autonomous vehicles, augmented reality (AR), virtual reality (VR), and industrial automation. The convergence between 5G and fog computing is expected to create lucrative opportunities for the market growth.

Growing Demand for Real-Time Data Processing and Analytics

The requirement to process and analyze data in real time is fueling the demand for fog computing in different industries. The contemporary world is so fast, and businesses and organizations are in dire need of instant insights and actions from the data produced through operations. Fog computing facilitates real-time processing through the provision of computation and storage resources closer to the source of data. This is particularly useful for time-critical applications in smart grids, healthcare monitoring, video surveillance, and financial services Moreover, it enhances the responsiveness and efficiency of applications, fosters data security, and enhances privacy by exposing less sensitive information to the broad internet, thereby positively impacting the fog computing market outlook.

Fog Computing Market Segmentation:

IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global, regional, and country levels for 2024-2032. Our report has categorized the market based on component, deployment models, and application.

Breakup by Component:

  • Hardware
    • Gateways
    • Routers and Switches
    • IP Video Cameras
    • Sensors
    • Micro Data Center
  • Software
    • Fog Computing Platform
    • Customized Application Software

Software accounts for the majority of the market share

The report has provided a detailed breakup and analysis of the market based on the component. This includes hardware (gateways, routers and switches, IP video cameras, sensors, and micro data center) and software (fog computing platform and customized application software). According to the report, software represented the largest segment.

The demand for software components like fog computing platforms and customized application software is driven by an increasing need for more flexible and scalable solutions that could address the multiple needs of various industries. Fog computing platforms bring along a comprehensive framework that owns the management of distributed computing resources and data across several edge devices, improving the overall flexibility and effectiveness of the system. Whereas in custom-made application software solutions, businesses are able to tailor fog computing to meet their operational needs in terms of getting the best performance and integration with already existing infrastructures. Apart from that, these software solutions also come along with influential tools for monitoring, management, and orchestration of edge devices to ensure smooth and efficient operations, which bolsters the fog computing market revenue.

Breakup by Deployment Models:

  • Private Fog Node
  • Community Fog Node
  • Public Fog Node
  • Hybrid Fog Node

A detailed breakup and analysis of the market based on the deployment models have also been provided in the report. This includes private fog nodes, community fog nodes, public fog nodes, and hybrid fog nodes.

The demand for private fog nodes is driven by organizations seeking enhanced data security and control, particularly in sectors like finance and healthcare, where sensitive data processing and compliance are crucial.

Community fog nodes cater to specific groups with common interests, such as research institutions or smart cities, facilitating shared resources and collaborative data processing, enhancing efficiency, and reducing costs.

Public fog nodes are designed for wide and relatively insensitive applications, public fog nodes achieve economies of scale and can be more cost-effective for sectors like retail or entertainment to deal with varied data loads.

As a combination of private and public components, the hybrid fog node provides flexibility and optimized resource utilization to enable objectives with respect to security, cost, and performance by a balance based on individual needs and the sensitivity of data for a given business.

Breakup by Application:

  • Building and Home Automation
  • Smart Energy
  • Smart Manufacturing
  • Transportation and Logistics
  • Connected Health
  • Security and Emergencies

Smart manufacturing represents the leading market segment

The report has provided a detailed breakup and analysis of the market based on the application. This includes building and home automation, smart energy, smart manufacturing, transportation and logistics, connected health, and security and emergencies. According to the report, smart manufacturing represented the largest segment.

The extensive demand for fog computing in smart manufacturing due to the need for real-time monitoring, predictive maintenance, and better automation is strengthening the market growth. Fog computing empowers local data processing, which repels latency to a very minimum and time-to-decision effectively. This is very critical to predictive maintenance, as it provides real-time identification of impending equipment failures and prevents costly downtime through the elongation of the life of a given machine. Besides, fog computing supports advanced automation systems by providing the computational power required for real-time data analysis and fast response, hence offering production lines and overall efficiency optimization. Moreover, with the processing of sensitive data locally, fog computing provides increased data security and privacy, thus influencing the fog computing industry outlook.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

North America leads the market, accounting for the largest fog computing market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represents the largest regional market for fog computing.

The fog computing industry report shows that the market demand in North America is driven by the region's advanced technological infrastructure, significant investments in IoT and smart city projects, and the presence of key industry players. North America, particularly the United States, is at the forefront of adopting cutting-edge technologies, with extensive R&D efforts and a robust ecosystem supporting innovation. The region's substantial investment in IoT applications across various sectors, including healthcare, automotive, and industrial automation, creates a growing need for efficient data processing solutions like fog computing. Additionally, the presence of major tech companies and startups in North America fuels the development and deployment of fog computing technologies, driving widespread adoption across the region.

Competitive Landscape:

  • The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the major market players in the fog computing industry include ADLINK Technology Inc., Cisco Systems Inc., Cradlepoint Inc. (Telefonaktiebolaget LM Ericsson), Dell Technologies Inc., FogHorn Systems, Fujitsu Limited, General Electric, Hitachi Vantara Corporation (Hitachi Ltd.), Huawei Technologies Co. Limited, International Business Machines Corporation, Oracle Corporation, Toshiba Corporation, etc.

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

  • The competitive landscape of the global fog computing market is characterized by the presence of several key players, including tech giants, innovative startups, and niche players. These companies are investing heavily in research and development (R&D) to enhance their fog computing offerings, focusing on improving scalability, security, and integration with IoT and 5G technologies. Collaborations, partnerships, and strategic acquisitions are common strategies employed to expand market presence and drive innovation. Additionally, open-source platforms and community-driven projects are gaining traction, enabling a broader range of developers to contribute to the ecosystem. The competitive environment is further intensified by the rapid advancements in AI and ML, which are being integrated into fog computing solutions to provide more intelligent and autonomous systems.

Fog Computing Market News:

  • In January 2023, Amazon Web Services (AWS) released AWS IoT Greengrass 3.0, an upgrade to their edge computing platform for IoT devices. The latest version has improved security features and supports additional programming languages, making it easier for developers to create and deploy fog computing applications.

Key Questions Answered in This Report

  • 1. How big is the global fog computing market?
  • 2. What is the expected growth rate of the global fog computing market during 2024-2032?
  • 3. What are the key factors driving the global fog computing market?
  • 4. What has been the impact of COVID-19 on the global fog computing market?
  • 5. What is the breakup of the global fog computing market based on the component?
  • 6. What is the breakup of the global fog computing market based on the application?
  • 7. What are the key regions in the global fog computing market?
  • 8. Who are the key players/companies in the global fog computing market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Fog Computing Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Component

  • 6.1 Hardware
    • 6.1.1 Market Trends
    • 6.1.2 Key Segments
      • 6.1.2.1 Gateways
      • 6.1.2.2 Routers and Switches
      • 6.1.2.3 IP Video Cameras
      • 6.1.2.4 Sensors
      • 6.1.2.5 Micro Data Center
    • 6.1.3 Market Forecast
  • 6.2 Software
    • 6.2.1 Market Trends
    • 6.2.2 Key Segments
      • 6.2.2.1 Fog Computing Platform
      • 6.2.2.2 Customized Application Software
    • 6.2.3 Market Forecast

7 Market Breakup by Deployment Models

  • 7.1 Private Fog Node
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Community Fog Node
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Public Fog Node
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Hybrid Fog Node
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast

8 Market Breakup by Application

  • 8.1 Building and Home Automation
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Smart Energy
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Smart Manufacturing
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Transportation and Logistics
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Connected Health
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 Security and Emergencies
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 ADLINK Technology Inc.
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
      • 14.3.1.3 Financials
    • 14.3.2 Cisco Systems Inc.
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 Financials
      • 14.3.2.4 SWOT Analysis
    • 14.3.3 Cradlepoint Inc. (Telefonaktiebolaget LM Ericsson)
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
    • 14.3.4 Dell Technologies Inc.
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
      • 14.3.4.3 Financials
      • 14.3.4.4 SWOT Analysis
    • 14.3.5 FogHorn Systems
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
    • 14.3.6 Fujitsu Limited
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
      • 14.3.6.3 Financials
      • 14.3.6.4 SWOT Analysis
    • 14.3.7 General Electric
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
      • 14.3.7.3 Financials
      • 14.3.7.4 SWOT Analysis
    • 14.3.8 Hitachi Vantara Corporation (Hitachi Ltd.)
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
    • 14.3.9 Huawei Technologies Co. Limited
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
    • 14.3.10 International Business Machines Corporation
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 Oracle Corporation
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 Financials
      • 14.3.11.4 SWOT Analysis
    • 14.3.12 Toshiba Corporation
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
      • 14.3.12.3 Financials
      • 14.3.12.4 SWOT Analysis
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦