½ÃÀ庸°í¼­
»óǰÄÚµå
1609880

ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå º¸°í¼­ : ÄÄÆ÷³ÍÆ®, µµÀÔ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº°(2025-2033³â)

Japan Predictive Maintenance Market Report by Component (Solutions, Services), Deployment (On-premise, Cloud), End User (Energy and Utilities, Transportation, Manufacturing, Healthcare, and Others), and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 121 Pages | ¹è¼Û¾È³» : 5-7ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 7¾ï 7,470¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ½ÃÀåÀÌ 2033³â±îÁö 74¾ï 70¸¸ ´Þ·¯¿¡ ´ÞÇϸç, 2025-2033³âÀÇ ¼ºÀå·ü(CAGR)Àº 28.5%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ¸Ó½Å Åõ ¸Ó½Å(M2M) Åë½ÅÀÇ ÀÌ¿ë È®´ë, ³ëÈÄÈ­ÇÑ »ê¾÷ ±â±âÀÇ °¡µ¿ ¼ö¸í ¿¬Àå¿¡ ´ëÇÑ ÅõÀÚ È®´ë, ÷´Ü °Ë»ç¸¦ ½ÃÇàÇϱâ À§ÇÑ ¿ø°Ý °¨½ÃÀÇ µµÀÔ È®´ë µî ¸î°³ÀÇ Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

º» ¸®Æ÷Æ®¿¡¼­ ´äº¯ÇÏ´Â ÁÖ¿ä Áú¹®

  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ Áö±Ý±îÁö ½ÇÀû°ú ÇâÈÄ ¼ö³â°£ ½ÇÀûÀº?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå¿¡ COVID-19°¡ ¹ÌÄ£ ¿µÇâÀº?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ ÄÄÆ÷³ÍÆ®º° ³»¿ªÀº?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ µµÀÔº° ³»¿ªÀº?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ ÃÖÁ¾»ç¿ëÀÚº° ³»¿ªÀº?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ ¹ë·ùüÀο¡´Â ¾î¶² ´Ü°è°¡ Àִ°¡?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü¿¡¼­ ÁÖ¿ä ÃËÁø¿äÀΰú °úÁ¦´Â?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ ±¸Á¶¿Í ÁÖ¿ä ±â¾÷Àº?
  • ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ °æÀïÀÇ Á¤µµ´Â?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
  • ½ÃÀå ÃßÁ¤
  • Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå : ¼­·Ð

  • °³¿ä
  • ½ÃÀå ¿ªÇÐ
  • ¾÷°è µ¿Çâ
  • °æÀï Á¤º¸

Á¦5Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå ±¸µµ

  • °ú°Å ¹× ÇöÀç ½ÃÀå µ¿Çâ(2019-2024³â)
  • ½ÃÀå ¿¹Ãø(2025-2033)

Á¦6Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º° ³»¿ª

  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦7Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå : µµÀÔº° ³»¿ª

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

Á¦8Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº° ³»¿ª

  • ¿¡³ÊÁö¿Í À¯Æ¿¸®Æ¼
  • ¿î¼Û±â°ü
  • Á¦Á¶
  • ÇコÄɾî
  • ±âŸ

Á¦9Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå : °æÀï ±¸µµ

  • °³¿ä
  • ½ÃÀå ±¸Á¶
  • ½ÃÀå ±â¾÷ Æ÷Áö¼Å´×
  • ÁÖ¿ä ¼º°ø Àü·«
  • °æÀï ´ë½Ãº¸µå
  • ±â¾÷ Æò°¡ »óÇÑ

Á¦10Àå ÁÖ¿ä ±â¾÷ÀÇ °³¿ä

Á¦11Àå ÀϺ»ÀÇ ¿¹Áöº¸Àü ½ÃÀå : ¾÷°è ºÐ¼®

  • ÃËÁø¿äÀΡ¤¾ïÁ¦¿äÀΡ¤±âȸ
  • Porter's Five Forces ºÐ¼®
  • ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå ºÎ·Ï

KSA 24.12.26

Japan predictive maintenance market size reached USD 774.7 Million in 2024. Looking forward, IMARC Group expects the market to reach USD 7,400.7 Million by 2033, exhibiting a growth rate (CAGR) of 28.5% during 2025-2033. The market is being propelled by several significant factors, including the expanding use of machine-to-machine (M2M) communication, greater investments in prolonging the operational lifespan of aging industrial equipment, and the increased incorporation of remote monitoring for conducting advanced inspections.

Predictive maintenance is a methodology that relies on the use of condition-monitoring tools and systems for real-time equipment performance monitoring. This approach incorporates technologies like the Internet of Things (IoT), artificial intelligence (AI), and integrated systems to connect various assets and share and analyze critical data. It encompasses components such as predictive maintenance sensors, industrial controls, and business software like Enterprise Asset Management (EAM) and Enterprise Resource Planning (ERP) systems. The core function of predictive maintenance is to employ condition monitoring equipment to assess and analyze asset performance. It gathers diverse data points, including temperature, vibrations, and conductivity, enabling engineers to anticipate equipment or asset failures and plan for proactive repairs or replacements. Predictive maintenance offers advantages such as cost reduction, extended equipment lifespan, and enhanced productivity. Furthermore, its demand is on the rise due to its contribution to safety compliance and the ability to take preemptive corrective actions.

Japan Predictive Maintenance Market Trends:

The predictive maintenance market in Japan is experiencing substantial growth, driven by the country's technological prowess and its commitment to optimizing industrial operations. Japanese industries have been quick to adopt predictive maintenance strategies that leverage advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and integrated systems. These technologies are used to monitor and analyze critical equipment data in real-time, allowing for the early detection of potential failures or maintenance needs. Japan's extensive manufacturing sector, including automotive and electronics industries, has recognized the value of predictive maintenance in reducing downtime, lowering maintenance costs, and ensuring the efficient operation of machinery and production lines. Additionally, the integration of predictive maintenance with safety compliance measures has made it a crucial component of industrial processes. As Japan continues to prioritize innovation and efficiency in its industrial landscape, the predictive maintenance market is expected to witness further expansion and adoption across various sectors.

Japan Predictive Maintenance Market Segmentation:

Component Insights:

  • Solutions
  • Services

Deployment Insights:

  • On-premise
  • Cloud

End User Insights:

  • Energy and Utilities
  • Transportation
  • Manufacturing
  • Healthcare
  • Others

Competitive Landscape:

The market research report has also provided a comprehensive analysis of the competitive landscape. Competitive analysis such as market structure, key player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided.

Key Questions Answered in This Report:

  • How has the Japan predictive maintenance market performed so far and how will it perform in the coming years?
  • What has been the impact of COVID-19 on the Japan predictive maintenance market?
  • What is the breakup of the Japan predictive maintenance market on the basis of component?
  • What is the breakup of the Japan predictive maintenance market on the basis of deployment?
  • What is the breakup of the Japan predictive maintenance market on the basis of end user?
  • What are the various stages in the value chain of the Japan predictive maintenance market?
  • What are the key driving factors and challenges in the Japan predictive maintenance?
  • What is the structure of the Japan predictive maintenance market and who are the key players?
  • What is the degree of competition in the Japan predictive maintenance market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Japan Predictive Maintenance Market - Introduction

  • 4.1 Overview
  • 4.2 Market Dynamics
  • 4.3 Industry Trends
  • 4.4 Competitive Intelligence

5 Japan Predictive Maintenance Market Landscape

  • 5.1 Historical and Current Market Trends (2019-2024)
  • 5.2 Market Forecast (2025-2033)

6 Japan Predictive Maintenance Market - Breakup by Component

  • 6.1 Solutions
    • 6.1.1 Overview
    • 6.1.2 Historical and Current Market Trends (2019-2024)
    • 6.1.3 Market Forecast (2025-2033)
  • 6.2 Services
    • 6.2.1 Overview
    • 6.2.2 Historical and Current Market Trends (2019-2024)
    • 6.2.3 Market Forecast (2025-2033)

7 Japan Predictive Maintenance Market - Breakup by Deployment

  • 7.1 On-premise
    • 7.1.1 Overview
    • 7.1.2 Historical and Current Market Trends (2019-2024)
    • 7.1.3 Market Forecast (2025-2033)
  • 7.2 Cloud
    • 7.2.1 Overview
    • 7.2.2 Historical and Current Market Trends (2019-2024)
    • 7.2.3 Market Forecast (2025-2033)

8 Japan Predictive Maintenance Market - Breakup by End User

  • 8.1 Energy and Utilities
    • 8.1.1 Overview
    • 8.1.2 Historical and Current Market Trends (2019-2024)
    • 8.1.3 Market Forecast (2025-2033)
  • 8.2 Transportation
    • 8.2.1 Overview
    • 8.2.2 Historical and Current Market Trends (2019-2024)
    • 8.2.3 Market Forecast (2025-2033)
  • 8.3 Manufacturing
    • 8.3.1 Overview
    • 8.3.2 Historical and Current Market Trends (2019-2024)
    • 8.3.3 Market Forecast (2025-2033)
  • 8.4 Healthcare
    • 8.4.1 Overview
    • 8.4.2 Historical and Current Market Trends (2019-2024)
    • 8.4.3 Market Forecast (2025-2033)
  • 8.5 Others
    • 8.5.1 Historical and Current Market Trends (2019-2024)
    • 8.5.2 Market Forecast (2025-2033)

9 Japan Predictive Maintenance Market - Competitive Landscape

  • 9.1 Overview
  • 9.2 Market Structure
  • 9.3 Market Player Positioning
  • 9.4 Top Winning Strategies
  • 9.5 Competitive Dashboard
  • 9.6 Company Evaluation Quadrant

10 Profiles of Key Players

  • 10.1 Company A
    • 10.1.1 Business Overview
    • 10.1.2 Product Portfolio
    • 10.1.3 Business Strategies
    • 10.1.4 SWOT Analysis
    • 10.1.5 Major News and Events
  • 10.2 Company B
    • 10.2.1 Business Overview
    • 10.2.2 Product Portfolio
    • 10.2.3 Business Strategies
    • 10.2.4 SWOT Analysis
    • 10.2.5 Major News and Events
  • 10.3 Company C
    • 10.3.1 Business Overview
    • 10.3.2 Product Portfolio
    • 10.3.3 Business Strategies
    • 10.3.4 SWOT Analysis
    • 10.3.5 Major News and Events
  • 10.4 Company D
    • 10.4.1 Business Overview
    • 10.4.2 Product Portfolio
    • 10.4.3 Business Strategies
    • 10.4.4 SWOT Analysis
    • 10.4.5 Major News and Events
  • 10.5 Company E
    • 10.5.1 Business Overview
    • 10.5.2 Product Portfolio
    • 10.5.3 Business Strategies
    • 10.5.4 SWOT Analysis
    • 10.5.5 Major News and Events

11 Japan Predictive Maintenance Market - Industry Analysis

  • 11.1 Drivers, Restraints, and Opportunities
    • 11.1.1 Overview
    • 11.1.2 Drivers
    • 11.1.3 Restraints
    • 11.1.4 Opportunities
  • 11.2 Porters Five Forces Analysis
    • 11.2.1 Overview
    • 11.2.2 Bargaining Power of Buyers
    • 11.2.3 Bargaining Power of Suppliers
    • 11.2.4 Degree of Competition
    • 11.2.5 Threat of New Entrants
    • 11.2.6 Threat of Substitutes
  • 11.3 Value Chain Analysis

12 Appendix

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦