![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1660948
¹ÝµµÃ¼ Àç·á ½ÃÀå º¸°í¼ : Àç·á, ¿ëµµ, ÃÖÁ¾ ÀÌ¿ë »ê¾÷, Áö¿ªº°(2025-2033³â)Semiconductor Materials Market Report by Material, Application, End Use Industry, and Region 2025-2033 |
¹ÝµµÃ¼ Àç·á ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 578¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº 2033³â¿¡´Â 782¾ï ´Þ·¯¿¡ À̸£°í, 2025-2033³âÀÇ ¼ºÀå·ü(CAGR)Àº 3.25%°¡ µÉ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ÀüÀÚ ¼ö¿ä Áõ°¡, ¹ÝµµÃ¼ Á¦Á¶ÀÇ Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü, 5G ¹× Àü±âÀÚµ¿Â÷¿Í °°Àº ½ÅÈï ¿ëµµÀÇ ¼ºÀåÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀÇ ÀϺÎÀÔ´Ï´Ù.
¹ÝµµÃ¼ Àç·á´Â ±Ý¼Ó°ú Àý¿¬Ã¼ »çÀÌÀÇ Áß°£ Àü±â Àüµµµµ¸¦ °¡Áö°í ÀÖ½À´Ï´Ù. µû¶ó¼ µµÃ¼µµ Àý¿¬Ã¼µµ ¾Æ´Õ´Ï´Ù. ±×·¯³ª µµÇÎ °øÁ¤À» °ÅÃÄ ºû, ¿, Àü¾Ð¿¡ ³ëÃâµÇ¸é Àü±â¸¦ Åë°úÇÏ°Ô µË´Ï´Ù. ÀÌ °øÁ¤Àº ¼ø¼öÇÑ ¹ÝµµÃ¼¿¡ ¼Ò·®ÀÇ ºÒ¼ø¹°À» Èí¼öÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ¹ÝµµÃ¼ Àç·á´Â ÀϹÝÀûÀ¸·Î NÇü°ú PÇüÀÇ 2À¯Çü·Î ³ª´¹´Ï´Ù. NÇü ¹ÝµµÃ¼´Â ÀüÀÚ°¡ °úÀ×ÀÎ ¹Ý¸é, PÇüÀº ¾çÀüÇϰ¡ ¸¹½À´Ï´Ù. ¹ÝµµÃ¼ Àç·á´Â °¡º¯ ÀúÇ×À» ³ªÅ¸³»¸ç ÇÑ ¹æÇâÀ¸·Î Àü·ù¸¦ Åë°úÇϱ⠽±½À´Ï´Ù.
¹ÝµµÃ¼ Àç·á´Â ÀüÀÚ »ê¾÷¿¡¼ ÇʼöÀûÀÎ ±â¼ú Çõ½Å Áß ÇϳªÀÔ´Ï´Ù. ±× ÀÌÀ¯´Â ³ôÀº ÀüÀÚ À̵¿µµ, ³ÐÀº ¿Âµµ ¹üÀ§, ³·Àº ¿¡³ÊÁö ¼Òºñ¿¡ ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ(Si), °Ô¸£¸¶´½(Ge), °¥·ýºñ¼Ò(GaAs) µîÀÇ Àç·á¸¦ äÅÃÇÔÀ¸·Î½á, ÀüÀÚ±â±â Á¦Á¶¾÷ü´Â ÀüÀÚÁ¦Ç°À» ¹«°Ì°í, ÈÞ´ëÇÏ±â ¾î·Æ°Ô ¸¸µå´Â Á¾·¡ÀÇ ¿ÀüÀÚ µð¹ÙÀ̽º¸¦ ´ëüÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. ±× °á°ú, À̵é Àç·á´Â ´ÙÀÌ¿Àµå, Æ®·£Áö½ºÅÍ, ÁýÀû Ĩ µî ´Ù¾çÇÑ ÀüÀÚ ºÎǰÀÇ Á¦Á¶¿¡ Æø³Ð°Ô ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¿Ü¿¡µµ, ÀÌ·¯ÇÑ ¼ÒÇü ÀüÀÚ ºÎǰÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ¾î ¼ÒÇüÈµÈ µð¹ÙÀ̽ºÀÇ Á¦Á¶°¡ ´õ¿í ¿ëÀÌÇØÁ³½À´Ï´Ù. ±âŸ ƯÀüÀ¸·Î´Â »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ÃâÇö°ú ½º¸¶Æ®Æù, ³ëÆ®ºÏ, ÅÂºí¸´ µîÀÇ ¼ÒºñÀÚ ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¾÷°è°¡ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù.
The global semiconductor materials market size reached USD 57.8 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 78.2 Billion by 2033, exhibiting a growth rate (CAGR) of 3.25% during 2025-2033. The increasing demand for electronics, continuous technological advancements in semiconductor manufacturing, and growth in emerging applications like 5G and electric vehicles are some of the key factors driving the growth of the market.
Semiconductor materials have an electrical conductivity range between that of a metal and an insulator. As a result, they neither demonstrate the properties of a conductor nor an insulator. However, they acquire the potential of conducting electricity when they are exposed to light, heat, or voltage post the doping process. This process involves the incorporation of small amounts of impurities to pure semiconductors. Semiconductor materials are generally divided into two categories, namely, N-type and P-type. The N-type semiconductors have an excess of electrons, whereas the P-type materials have a higher positive charge. Semiconductor materials show variable resistance and they pass current easily in one direction.
Semiconductor materials represent one of the essential innovations in the electronics industry. This can be accredited to their high electron mobility, wide temperature limits and low energy consumption. By employing material such as silicon (Si), germanium (Ge) and gallium arsenide (GaAs), electronics manufacturers have been able to replace traditional thermionic devices that made electronic items heavy and non-portable. Consequently, these materials find vast applications in the manufacturing of different electronic components such as diodes, transistors and integrated chips. In addition to this, the availability of these small electronic components has further facilitated the production of miniaturized devices. Additionally, the industry is benefitting from the advent of the Internet of Things (IoT) and the growing demand for consumer electronics, such as smartphones, laptops and tablets.
The report has also analysed the competitive landscape of the market with some of the key players being BASF SE, LG Chem Ltd, Indium Corporation, Hitachi Chemical Co. Ltd, KYOCERA Corporation, Henkel AG & Company KGAA, Sumitomo Chemical Co. Ltd, DuPont de Nemours Inc., International Quantum Epitaxy PLC., Nichia Corporation, Intel Corporation, UTAC Holdings Ltd, etc.